Câu hỏi:
13/07/2024 5,325c) Đi qua hai điểm A(4; 1), B(6; 5) và có tâm nằm trên đường thẳng 4x + y – 16 = 0;
Câu hỏi trong đề: Bài tập Bài tập cuối chương 9 có đáp án !!
Quảng cáo
Trả lời:
c) Phương trình đường tròn tâm I(a; b) có dạng: x2 + y2 − 2ax − 2by + c = 0.
Vì I(a; b) thuộc đường thẳng 4x + y − 16 = 0 và các điểm A(4; 1), B(6; 5) thuộc đường tròn nên ta có hệ phương trình sau:
.
Vậy phương trình đường tròn là: x2 + y2 − 6x − 8y + 15 = 0.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là 192 m (Hình 3). Từ một điểm M trên thân cổng, người ta đo được khoảng cách đến mặt đất là 2 m và khoảng cách từ chân đường vuông góc vẽ từ M xuống mặt đất đến chân cổng gần nhất là 0,5 m. Tính chiều cao của cổng.
Câu 3:
Một gương lõm có mặt cắt hình parabol như Hình 1, có tiêu điểm cách đỉnh 5 cm. Cho biết bề sâu của gương là 45 cm, tính khoảng cách AB.
Câu 4:
Một bộ thu năng lượng mặt trời để làm nóng nước được làm bằng một tấm thép không gỉ có mặt cắt hình parabol (Hình 2). Nước sẽ chảy thông qua một dường ống nằm ở tiêu điểm của parabol.
a) Viết phương trình chính tắc của parabol.
Câu 5:
Tìm tọa độ giao điểm và góc giữa hai đường thẳng d1 và d2 trong mỗi trường hợp sau:
a) d1: x – y + 2 = 0 và d2: x + y + 4 = 0;
Câu 6:
Viết phương trình tiếp tuyến của đường tròn (C): (x − 5)2 + (y − 3)2 = 100 tại điểm M(11; 11).
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận