Câu hỏi:

13/07/2024 4,364

d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là a, tung độ là b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

) Gọi A, B là giao điểm của đường tròn cần tìm với lần lượt trục Ox và Oy.

Ta có hình vẽ sau:

d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là a, tung độ là b. (ảnh 1)

Kẻ OH Ox, OK Oy

H là trung điểm của OA (đường kính vuông góc với dây) OH = HA = 12OA = a2.

K là trung điểm của OB (đường kính vuông góc với dây) OK = KB = 12OB = b2.

(a2;b2)

IO=0-a2;0-b2=-a2;-b2  IA = -a22+ -b22=a2+b24

Phương trình đường tròn cần tìm là:

x-a22+ y-b22=a2+b24.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ tọa độ như hình vẽ:

Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là (ảnh 2)

Phương trình parabol (P) có dạng y2 = 2px.

Gọi chiều cao của cổng là h (m) OC = h

Ta có khoảng cách từ điểm M đến mặt đất là 2m nên MH = 2 OK = h – 2 và khoảng cách từ chân đường vuông góc vẽ từ M xuống mặt đất đến cổng gần nhất là 0,5 m nên AH = 0,5.

Ta lại có khoảng cách giữa hai chân cổng là 192 m nên AC = 192 : 2 = 96.

Khi đó tọa độ điểm A là A(h; 96)

Mà AH + CH = AC

CH = AC – AH = 96 – 0,5 = 95,5

M(h – 2; 95,5).

Vì các điểm M và A thuộc parabol nên tọa độ của M và A đều thỏa mãn phương trình y2 = 2px, ta có:

962 = 2ph (1) và 95,52 = 2p(h – 2) (2)

Chia vế với vế của (1) cho (2) ta được:

962=2ph95,52=2p(h2)96295,52=hh2 h = 2.96296295,52≈ 192,5 (m)

Vậy chiều cao của cổng khoảng 192,5 m.

Lời giải

c)  Parabol (P) đi qua điểm (1; 4) nên thay tọa độ (1; 4) vào phương trình : y2 = 2px, ta được: 42  = 2p. 1  p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

d) Parabol (P) tiêu điểm Fp2;0 , phương trình đường chuẩn ∆ : x +  = 0.

Vì parabol (P) có khoảng cách từ tiêu điểm đến đường chuẩn bằng 8 nên:

d(F, Δ) = 8 p2+p212+02= 8 p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay