Câu hỏi:
27/10/2022 2,924Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác góc A (M ∈ BC). Trên cạnh AC lấy điểm N sao cho AB = AN. Góc bằng với \(\widehat {{\rm{BAC}}}\) là
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét ∆ABM và ∆ANM có:
AB = AN (giả thiết),
\(\widehat {{\rm{BAM}}} = \widehat {{\rm{NAM}}}\) (do AM là tia phân giác góc A),
AM là cạnh chung.
Suy ra ∆ABM = ∆ANM (c.g.c)
Suy ra \(\widehat {{\rm{ABM}}} = \widehat {{\rm{ANM}}} = 90^\circ \) (hai góc tương ứng)
Ta có \(\widehat {{\rm{ANM}}} + \widehat {{\rm{CNM}}} = 180^\circ \) (hai góc kề bù)
Hay \(90^\circ + \widehat {{\rm{CNM}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{CNM}}} = 180^\circ - 90^\circ = 90^\circ \)
Xét ∆CNM có \(\widehat {\rm{C}} + \widehat {{\rm{CNM}}} + \widehat {{\rm{CMN}}} = 180^\circ \)(tổng ba góc trong một tam giác bằng 180°)
Hay \(\widehat {\rm{C}} + 90^\circ + \widehat {{\rm{CMN}}} = 180^\circ \)
Suy ra \(\widehat {\rm{C}} + \widehat {{\rm{CMN}}} = 180^\circ - 90^\circ = 90^\circ \) (1)
Xét ∆ABC vuông tại B có: \(\widehat {{\rm{BAC}}} + \widehat {\rm{C}} = 90^\circ \)(tổng hai góc nhọn trong tam giác vuông bằng 90°) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{BAC}}} = \widehat {{\rm{CMN}}}\).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác ABC có AB = AC và AH là đường cao kẻ từ A. Biết \(\widehat B = 43^\circ ,\) số đo của \(\widehat {BAC}\) là
Câu 3:
Cho hình vẽ
Biết ∆DEF = ∆ABC và \(\widehat {\rm{D}} = 68^\circ \); \(\widehat {\rm{E}} = 40^\circ \). Số đo của \(\widehat {\rm{C}}\) là:
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
về câu hỏi!