Câu hỏi:

05/11/2022 224

Cho ∆ABC cân tại A có trực tâm I. Biết BIC^=120°. Số đo các góc của ∆ABC là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Gọi BI cắt AC tại H, CI cắt AB tại K

BH, CK là đường cao của ∆ABC

Ta có BIC^+CIH^=180° (hai góc kề bù)

 120°+CIH^=180°

 CIH^=60°

∆CIH vuông tại H  CIH^+HCI^=90°

∆CKA vuông tại K  BAC^+HCI^=90°

Do đó BAC^=CIH^

 BAC^=60°

Mà ∆ABC cân (giả thiết)

Suy ra ∆ABC đều

Do đó A^=B^=C^=60°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho tam giác nhọn MNP có hai đường cao NE và PF cắt nhau tại H. Biết NE = PF. Khẳng định đúng là

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác nhọn MNP có hai đường cao NE và PF cắt nhau tại H. Biết NE = PF. Khẳng định đúng là (ảnh 1)

∆MNP có hai đường cao NE và PF cắt nhau tại H

H là trực tâm ∆MNP

MH BC

Xét ∆MNE và ∆MPF có

MEN^=MFP^=90°

NE = PF (giả thiết)

MNE^=MPF^  (cùng phụ góc M)

Suy ra ∆MNE = ∆MPF (g.c.g)

Do đó MN = MP (hai cạnh tương ứng) ∆MNP cân tại M

ME = MF (hai cạnh tương ứng) ∆MFE cân tại M.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác ABC nhọn, hai đường cao BD và CE gặp nhau tại H. Vẽ điểm K sao cho AB (ảnh 1)

Gọi AH cắt BC tại T AT là đường cao của ∆ABC.

AB là trung trực của HK (giả thiết) KE = HE và AE KH

Xét ∆AKE và ∆AHE có

AE là cạnh chung

AEK^=AEH^=90°

KE = HE

Suy ra ∆AKE = ∆AHE (c.g.c)

Do đó KAE^=HAE^ (hai góc tương ứng)

Hay KAB^=TAB^  (1)

∆TAB vuông tại T  TAB^+ABC^=90°

∆ECB vuông tại E  ECB^+ABC^=90°

Do đó TAB^=ECB^ hay TAB^=KCB^ (2)

Từ (1) và (2) suy ra KAB^=KCB^.

Câu 3

Cho tam giác ABC cân tại B có đường cao BH. Khẳng định đúng là

Cho tam giác ABC cân tại B có đường cao BH. Khẳng định đúng là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP