Câu hỏi:

05/11/2022 1,110 Lưu

Cho ∆ABC cân tại A. Trên 2 cạnh AB và AC lấy hai điểm M và N sao cho AM = AN. So sánh BN với BC + MN đúng là

A. BN>BC+MN2 ;

B. BN<BC+MN2;

C. BN=BC+MN2;

D. Không đủ dữ kiện để so sánh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lấy hai điểm M và N sao cho AM = AN. (ảnh 1)

∆ABC cân tại A nên AB = AC và ABC^=ACB^ (tính chất)

Mà AM = AN (giả thiết) suy ra BM = CN

Xét hai tam giác vuông MBH và NCK có:

ABC^=ACB^

BM = CN

Suy ra ∆MBH = ∆NCK (cạnh huyền – góc nhọn)

Do đó: BH = CK và MH = NK

Có AM = AN (giả thiết) suy ra ∆AMN cân tại A

AMN^=ANM^ (tính chất)

AMN^+ANM^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra AMN^=180°BAC^2 (1)

B^=C^ B^+C^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra B^=180°BAC^2 (1)

Từ (1) và (2) suy ra AMN^=B^ mà hai góc đồng vị nên MN // BC.

Mà BC MH nên MN MH

Xét hai tam giác vuông HMN và NKH có

MH = NK (chứng minh trên)

NH là cạnh chung

Suy ra ∆HMN = ∆NKH (cạnh huyền – cạnh góc vuông)

Do đó MN = HK

Mặt khác: BN > BK (quan hệ đường vuông góc – đường xiên)

Suy ra: 2BN > 2BK = 2(BH + HK) = 2BH + 2HK = BH + KC + MN + HK = BC + MN

Do đó: BN>BC+MN2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC cân tại A. Tia phân giác của góc B và góc C cắt cạnh AC, AB lần lượt ở D và E. (ảnh 1)

Ta có ∆ABC cân tại A (giả thiết) suy ra ABC^=ACB^ (tính chất)

BD là tia phân giác góc B nên EBD^=DBC^=12ABC^

CE là tia phân giác góc C nên DCE^=ECB^=12ACB^

Do đó EBD^=DBC^=DCE^=ECB^

Xét ∆BEC và ∆CDB có:

ABC^=ACB^

BC là cạnh chung

ECB^=DBC^ (chứng minh trên)

Suy ra ∆BEC = ∆CDB (g.c.g)

Do đó BE = CD (hai cạnh tương ứng)

Mà BE + EA = AB; CD + DA = AC

AB = AC (tam giác ABC cân tại A)

Suy ra EA = DA ∆AED cân tại A AED^=ADE^ (tính chất)

AED^+ADE^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra AED^=180°BAC^2 (1)

ABC^=ACB^ ABC^+ACB^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra ABC^=180°BAC^2 (1)

Từ (1) và (2) suy ra AED^=ABC^ mà hai góc đồng vị nên ED // BC.

Suy ra EDB^=DBC^ (hai góc so le trong)

EDB^=DBC^ (chứng ninh trên)

Suy ra EDB^=EBD^

Do đó tam giác EBD cân tại E (dấu hiệu nhận biết)

Suy ra EB = ED

Vậy BE = CD = ED.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho góc xOy khác góc bẹt, lấy điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho OA = OB. (ảnh 1)

M là trung điểm của AB (giả thiết) nên MB = MA

Xét ∆OBM và ∆OMA có

OB = OA (giả thiết)

OM là cạnh chung

MB = MA (chứng minh trên)

Suy ra ∆OBM = ∆OAM (c.c.c)

Do đó OMB^=OMA^  (hai góc tương ứng)

BOM^=AOM^ (hai góc tương ứng)

Suy ra OM là tia phân giác góc BOA hay góc xOy.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP