Câu hỏi:
29/11/2022 10,315Số gia của hàm số \[f\left( x \right) = {x^2} - 4x + 1\] ứng với x và \[\Delta x\]là
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A
Ta có
\[\begin{array}{l}\Delta y = f\left( {\Delta x + x} \right) - f\left( x \right)\\ = {\left( {\Delta x + x} \right)^2} - 4\left( {\Delta x + x} \right) + 1 - \left( {{x^2} - 4x + 1} \right)\\ = \Delta {x^2} + 2\Delta x.x + {x^2} - 4\Delta x - 4x + 1 - {x^2} + 4x - 1 = \Delta {x^2} + 2\Delta x.x - 4\Delta x\\ = \Delta x\left( {\Delta x + 2x - 4} \right)\end{array}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm \[a,b\] để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + x{\rm{ }}khi{\rm{ }}x \ge 1\\ax + b{\rm{ }}khi{\rm{ }}x < 1\end{array} \right.\] có đạo hàm tại \[x = 1\].
Câu 2:
Cho hàm số \[f(x) = \left\{ \begin{array}{l}{x^2}{\rm{ khi }}x \le 2\\ - \frac{{{x^2}}}{2} + bx - 6{\rm{ khi }}x > 2\end{array} \right.\]. Để hàm số này có đạo hàm tại \(x = 2\) thì giá trị của b là
Câu 3:
Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?
Câu 4:
Cho hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2}}}{2}{\rm{ khi }}x \le 1\\ax + b{\rm{ khi }}x > 1\end{array} \right.\]. Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại \(x = 1\)?
Câu 5:
\(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} - 2{x^2} + x + 1} - 1}}{{x - 1}}{\rm{ khi }}x \ne 1\\0{\rm{ khi }}x = 1\end{array} \right.\) tại điểm \({x_0} = 1\).
Câu 6:
Cho hàm số \(f\left( x \right)\) liên tục tại \[{x_0}\]. Đạo hàm của \(f\left( x \right)\) tại \[{x_0}\] là
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận