Câu hỏi:

29/11/2022 8,349

Cho hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2}}}{2}{\rm{            khi   }}x \le 1\\ax + b{\rm{       khi    }}x > 1\end{array} \right.\]. Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại \(x = 1\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A

Hàm số liên tục tại \(x = 1\) nên Ta có \[a + b = \frac{1}{2}\]

Hàm số có đạo hàm tại \(x = 1\) nên giới hạn 2 bên của \[\frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\] bằng nhau và Ta có

\[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ax + b - \left( {a.1 + b} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{a\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} a = a\]

\[\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\frac{{{x^2}}}{2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{2\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x + 1} \right)}}{2} = 1\]

Vậy \(a = 1;b = - \frac{1}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Chọn B

Ta có

\[\begin{array}{l}{ \bullet _{}}f\left( 2 \right) = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} = 4\\{ \bullet _{}}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{{{x^2}}}{2} + bx - 6} \right) = 2b - 8\end{array}\]

\[f\left( x \right)\] có đạo hàm tại \(x = 2\) khi và chỉ khi \[f\left( x \right)\] liên tục tại \(x = 2\)

     \[ \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2b - 8 = 4 \Leftrightarrow b = 6.\]

Câu 2

Số gia của hàm số \[f\left( x \right) = {x^2} - 4x + 1\] ứng với x và \[\Delta x\]

Lời giải

Hướng dẫn giải:

Chọn A

Ta có

\[\begin{array}{l}\Delta y = f\left( {\Delta x + x} \right) - f\left( x \right)\\ = {\left( {\Delta x + x} \right)^2} - 4\left( {\Delta x + x} \right) + 1 - \left( {{x^2} - 4x + 1} \right)\\ = \Delta {x^2} + 2\Delta x.x + {x^2} - 4\Delta x - 4x + 1 - {x^2} + 4x - 1 = \Delta {x^2} + 2\Delta x.x - 4\Delta x\\ = \Delta x\left( {\Delta x + 2x - 4} \right)\end{array}\]

Câu 3

Tìm \[a,b\] để hàm số \[f(x) = \left\{ \begin{array}{l}{x^2} + x{\rm{ }}khi{\rm{ }}x \ge 1\\ax + b{\rm{ }}khi{\rm{ }}x < 1\end{array} \right.\] có đạo hàm tại \[x = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \(f\left( x \right)\) liên tục tại \[{x_0}\]. Đạo hàm của \(f\left( x \right)\) tại \[{x_0}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay