CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{a}{c}\)

B. \(\frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\)
C. \(\frac{{ad + bc}}{{{{\left( {cx + d} \right)}^2}}}\)
D. \(\frac{{ad - bc}}{{\left( {cx + d} \right)}}\)

Lời giải

Hướng dẫn giải:

Chọn B

Ta có \(y' = \frac{{ad - cb}}{{{{(cx + d)}^2}}} = \frac{{\left| \begin{array}{l}a{\rm{     }}b\\c{\rm{     }}d\end{array} \right|}}{{{{(cx + d)}^2}}}\)

Câu 2

A. \[6{x^5} - 20{x^4} + 16{x^3}\].
B. \[6{x^5} + 16{x^3}\].
C. \[6{x^5} - 20{x^4} + 4{x^3}\].
D. \[6{x^5} - 20{x^4} - 16{x^3}\].

Lời giải

Hướng dẫn giải:

Chọn A

Cách 1: Áp dụng công thức \[{\left( {{u^n}} \right)^\prime }\]

Ta có \(y' = 2.\left( {{x^3} - 2{x^2}} \right).{\left( {{x^3} - 2{x^2}} \right)^\prime } = 2\left( {{x^3} - 2{x^2}} \right).\left( {3{x^2} - 4x} \right)\)

\( = 6{x^5} - 8{x^4} - 12{x^4} + 16{x^3} = 6{x^5} - 20{x^4} + 16{x^3}\)

Cách 2 : Khai triển hằng đẳng thức :

Ta có: \[y = {\left( {{x^3} - 2{x^2}} \right)^2} = {x^6} - 4{x^5} + 4{x^4}\] \[ \Rightarrow y' = 6{x^5} - 20{x^4} + 16{x^3}\]

Câu 3

A. \(y' = 2\).
B. \(y' = - \frac{1}{{{{\left( {x - 1} \right)}^2}}}\).
C. \(y' = - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\).
D. \(y' = \frac{1}{{{{\left( {x - 1} \right)}^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = 5{\left( {1 - {x^3}} \right)^4}\).
B. \(y' = - 15{x^2}{\left( {1 - {x^3}} \right)^5}\).
C. \(y' = - 3{\left( {1 - {x^3}} \right)^4}\).
D. \(y' = - 5{x^2}{\left( {1 - {x^3}} \right)^4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x - 6{x^2}}}{{\sqrt {{x^2} - 4{x^3}} }}.\]
B. \[\frac{1}{{2\sqrt {{x^2} - 4{x^3}} }}.\]
C. \[\frac{{x - 12{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }}.\]
D. \[\frac{{x - 6{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[2\left( {3{x^2} - 1} \right)\].
B. \[6\left( {3{x^2} - 1} \right)\].
C. \[6x\left( {3{x^2} - 1} \right)\].
D. \[12x\left( {3{x^2} - 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP