Câu hỏi:

20/12/2022 139 Lưu

Xét số phức z thỏa mãn 1+2iz=10z2+i. Mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt z=a+bi  a,bc=z, thay vào đẳng thức đã cho thì
Gt1+2ic=10a+bi2+i1+2ic=abi10c22+ica10c2+2+i2c+b10c21=0
Suy ra ca10c2+2=02c+b10c21=0c+2=a10c212c=b10c nên c+22+12c2=10a2+b2c4=10c2
Giải c=±1 ra ta có mà c > 0 nên c = 1 hay z=1. Do đó 12<z<32.Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.
+ Đặt z=x+yi, x,y ta có 2zi=2+iz2x+2y1i=2y+xi
4x2+2y12=2y2+x24x2+4y24y+1=44y+y2+x2x2+y2=1z=1z1=z2=1
+ Sử dụng công thức: z1,z2 ta có z1+z22+z1z22=2z12+z22
Suy ra P=3.

Lời giải

Bổ đề. Cho hai số phức z1 và z2, ta luôn có z1+z22+z1z22=2z12+z22     .
Chứng minh. Sử dụng công thức z1+z22=z1+z2z1¯+z2¯z.z¯=z2. Khi đó
z1+z22+z1z22=z1+z2z1¯+z2¯+z1z2z1¯z2¯=z1.z1¯+z1.z2¯+z1¯.z2+z2.z2¯+z1.z1¯z1.z2¯z1¯.z2+z2.z2¯=2z1.z1¯+z2.z2¯=2z12+z22đpcm.
Áp dụng (*), ta được z1+z22+z1z22=4z1z22=432=1z1z2=1.
Theo bất đẳng thức Bunhiacopxki, P=z1+z22z12+z22=226. ta được Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP