Câu hỏi:

23/12/2022 416

Biết số phức z=x+yix,y, thỏa mãn đồng thời hai điều kiện z=z¯+43ivà P=z+1i+z2+3i biểu thức đạt giá trị nhỏ nhất. Tính P=x+2y.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn A .
Theo giả thiết z=z¯+43ix+yi=x+4y+3i
x2+y2=x+42+y+32x2+y2=x2+8x+16+y2+6y+98x+6y+25=0. 
Ta có P=x+12+y12+x22+y+32
Xét điểm E1;1; F2;3Mx;y. Khi đó, P=ME+MF.
Bài toán trở thành tìm điểm MΔ:8x+6y+25=0 sao cho ME+MF đạt giá trị nhỏ nhất.
8xE+8yE+25.8xF+8yF+25>0 nên hai điểm E, F nằm cùng phía đối với đường thẳng .
Gọi E' là điểm đối xứng với E qua 
Đường thẳng EE' đi qua điểm E (1; -1) và có VTPT nEE'=uΔ=3;4 nên có phương trình 3x+14y1=03x4y+7=0
Gọi H là giao điểm của EE' và . Tọa độ điểm H là nghiệm của hệ phương trình 3x4y=78x+6y=25x=7125y=1950 suy ra H7125;1950
E' đối xứng với E qua H nên xE'=11725yE'=4425.
Ta có ME+MF=ME'+MFE'F.
Dấu bằng xảy ra M là giao điểm của E'F và đường thẳng 
Đường thẳng EF' đi qua điểm F2;3 và có VTPT nEE'=31;167 có phương trình 31x2+167y+3=0 31x+167y+439=0
Tọa độ điểm M là nghiệm của hệ phương trình 31x+167y=4398x+6y=25x=6750y=11950
Vậy P=x+2y=6110.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.
+ Đặt z=x+yi, x,y ta có 2zi=2+iz2x+2y1i=2y+xi
4x2+2y12=2y2+x24x2+4y24y+1=44y+y2+x2x2+y2=1z=1z1=z2=1
+ Sử dụng công thức: z1,z2 ta có z1+z22+z1z22=2z12+z22
Suy ra P=3.

Lời giải

Bổ đề. Cho hai số phức z1 và z2, ta luôn có z1+z22+z1z22=2z12+z22     .
Chứng minh. Sử dụng công thức z1+z22=z1+z2z1¯+z2¯z.z¯=z2. Khi đó
z1+z22+z1z22=z1+z2z1¯+z2¯+z1z2z1¯z2¯=z1.z1¯+z1.z2¯+z1¯.z2+z2.z2¯+z1.z1¯z1.z2¯z1¯.z2+z2.z2¯=2z1.z1¯+z2.z2¯=2z12+z22đpcm.
Áp dụng (*), ta được z1+z22+z1z22=4z1z22=432=1z1z2=1.
Theo bất đẳng thức Bunhiacopxki, P=z1+z22z12+z22=226. ta được Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay