Quảng cáo
Trả lời:

Gọi với .
Ta có: . Suy ra, tập hợp điểm biểu diễn cho số phức z trên hệ tọa độ là đường tròn (C) tâm và bán kính .
Gọi , và là trung điểm của AB.
Đặt suy ra . (BĐT Bunhiacopxki).
Phương trình đường trung trực của AB là: .
Vì M chạy trên đường tròn , J cố định nên
Do vậy nên
Do đó: , tọa độ của M là nghiệm hệ:
Mặt khác:
và
Vậy để thì Suy ra .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+ Đặt , ta có
+ Sử dụng công thức: ta có
Suy ra .
Lời giải
Chứng minh. Sử dụng công thức và . Khi đó
Áp dụng (*), ta được
Theo bất đẳng thức Bunhiacopxki, ta được Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.