Cho hai số phức và thỏa mãn các điều kiện sau: .
Tìm giá trị nhỏ nhất của .
Tìm giá trị nhỏ nhất của .
Quảng cáo
Trả lời:
Ta có
.
Do đó, M thuộc nửa mặt phẳng bờ không chứa O, kể cả bờ.
Ta có suy ra
.
Do đó, N thuộc phần chung của hai hình tròn và .
Dễ thấy hai hình tròn này tiếp xúc ngoài tại điểm . Do đó, .
Ta thấy nên nhỏ nhất khi MN ngắn nhất, khi đó M là hình chiếu của N trên .
Ta có .
Vậy .
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+ Đặt , ta có
+ Sử dụng công thức: ta có
Suy ra .
Lời giải
Chứng minh. Sử dụng công thức và . Khi đó
Áp dụng (*), ta được
Theo bất đẳng thức Bunhiacopxki, ta được Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.