Câu hỏi:

31/01/2023 245

Với kn là hai số nguyên dương tùy ý thỏa mãn \[k \le n\], mệnh đề nào dưới đây đúng?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Sử dụng công thức tổ hợp.

Cách giải:

\[C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MNAD.

a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].

b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].

c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].

Xem đáp án » 12/07/2024 4,609

Câu 2:

Cho hình chóp S.ABCD đáy ABCD là hình vuông, biết \[AB = a,\angle SAD = 90^\circ \] và tam giác SAB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với SC, I là giao điểm của Dt và mặt phẳng \[\left( {SAB} \right)\]. Thiết diện của hình chóp S.ABCD với mặt phẳng \[\left( {AIC} \right)\] có diện tích là:

Xem đáp án » 31/01/2023 2,772

Câu 3:

Cho 5 điểm A, B, C, D, E trong đó không có 4 điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?

Xem đáp án » 31/01/2023 1,676

Câu 4:

Số các số tự nhiên có 5 chữ số khác nhau lập được từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là:

Xem đáp án » 31/01/2023 1,434

Câu 5:

Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.

a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.

Xem đáp án » 12/07/2024 1,218

Câu 6:

Phương trình \[\cos x = 1\] có nghiệm là

Xem đáp án » 31/01/2023 1,113

Câu 7:

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9, xác suất để số được chọn là số nguyên tố bằng:

Xem đáp án » 31/01/2023 649

Bình luận


Bình luận
Vietjack official store