Câu hỏi:
31/01/2023 129Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
+ Xác định tâm I và bán kính R của đường tròn \[\left( C \right)\].
+ Gọi \[I' = {V_{\left( {O;2} \right)}}\left( I \right)\], xác định tọa độ \[I'\].
+ Gọi \[\left( {C'} \right) = {V_{\left( {O;2} \right)}}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn tâm \[I'\], bán kính \[R' = \left| k \right|.R\]
Cách giải:
+ Đường tròn \[\left( C \right)\] có tâm \[I\left( {1;1} \right),R = 2\].
+ Gọi \[I' = {V_{\left( {O;2} \right)}}\left( I \right) \Rightarrow \overrightarrow {OI'} = 2\overrightarrow {OI} \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = 2.{x_I} = 2.1 = 2\\{y_{I'}} = 2.{y_I} = 2.1 = 2\end{array} \right. \Rightarrow I'\left( {2;2} \right)\]
+ Gọi \[\left( {C'} \right) = {V_{\left( {O;2} \right)}}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn tâm \[I'\left( {2;2} \right)\], bán kính \[R' = \left| k \right|.R = 2.2 = 4\]
Vậy phương trình đường tròn \[\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 16\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
Câu 7:
về câu hỏi!