Câu hỏi:
31/01/2023 200Giải các phương trình sau:
b) \[\sin x - \sqrt 3 \cos x = \sqrt 3 \]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) \[\sin x - \sqrt 3 \cos x = \sqrt 3 \]
Phương pháp:
Chia cả hai vế của phương trình cho \[\sqrt {{a^2} + {b^2}} \]
Cách giải:
\[\sin x - \sqrt 3 \cos x = \sqrt 3 \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 3 }}{2}\]
\[ \Leftrightarrow \sin x\cos \frac{\pi }{3} - \cos x\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin \frac{\pi }{3}\]
\[ \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{3} = \frac{\pi }{3} + k2\pi \\x - \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = \pi + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
Câu 7:
về câu hỏi!