Câu hỏi:

31/01/2023 339 Lưu

Nghiệm âm lớn nhất của phương trình \[\sin x + \cos x = 1 - \frac{1}{2}\sin 2x\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

- Biến đổi phương trình về dạng phương trình đối xứng đối với sin và cos.

- Sử dụng phương pháp đặt ẩn phụ \[t = \sin x + \cos x\] để giải phương trình này.

Cách giải:

Ta có: \[\sin x + \cos x = 1 - \frac{1}{2}\sin 2x \Leftrightarrow \sin x + \cos x = 1 - \sin x\cos x\]

Đặt \[\sin x + \cos x = t\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\]\[ \Rightarrow \sin x\cos x = \frac{{{t^2} - 1}}{2}\].

Khi đó phương trình trở thành:

\[t = 1 - \frac{{{t^2} - 1}}{2} = 0 \Leftrightarrow 2t + {t^2} - 1 - 2 = 0 \Leftrightarrow {t^2} + 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 & \left( {tm} \right)\\t = - 3 & \left( {ktm} \right)\end{array} \right.\]

Suy ra \[\sin x + \cos x = 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\]

\[ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Do x là nghiệm âm lớn nhất nên:

+ TH1: \[k2\pi < 0 \Leftrightarrow k < 0\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - 2\pi \]

+ TH2: \[\frac{\pi }{2} + k2\pi < 0 \Leftrightarrow k < - \frac{1}{4}\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - \frac{{3\pi }}{2}\]

Trong hai nghiệm \[ - 2\pi \]\[ - \frac{{3\pi }}{2}\] thì nghiệm âm lớn nhất là \[ - \frac{{3\pi }}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]

- Tính số khả năng có lợi cho biến cố.

- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]

Cách giải:

Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]

Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”

TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn

TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn

Số phần tử của biến cố A\[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]

Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]

Câu 2

Lời giải

Đáp án D

Phương pháp:

Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]

Cách giải:

Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP