Gọi I là tâm ngũ giác đều ABCDE (thứ tự các đỉnh theo chiều dương lượng giác). Kết luận nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Sử dụng phép quay tâm I góc quay \[\alpha \] biến M thành M’ thì \[OM = OM'\] và \[\angle \left( {OM;\,\,OM'} \right) = \alpha \]
Cách giải:
Vì ABCDE là ngũ giác đều tâm I nên \[IA = IB = IC = ID = IE\] và \[\widehat {CID} = \widehat {DIE} = \widehat {EIA} = \widehat {AIB} = \widehat {BIC} = \frac{{360^\circ }}{5} = 72^\circ \]
Từ đó ta có
\[{Q_{\left( {I;144^\circ } \right)}}\left( C \right) = E;\,\,{Q_{\left( {I;\,\,144^\circ } \right)}}\left( D \right) = A \Rightarrow {Q_{\left( {I;\,\,144^\circ } \right)}}\left( {CD} \right) = EA\] nên A đúng
\[{Q_{\left( {I;\,\,72^\circ } \right)}}\left( A \right) = B;\,\,{Q_{\left( {I;\,\,72^\circ } \right)}}\left( B \right) = C \Rightarrow {Q_{\left( {I;\,\,72^\circ } \right)}}\left( {AB} \right) = BC\] nên B đúng
\[{Q_{\left( {I;\,\,72^\circ } \right)}}\left( A \right) = B;\,\,{Q_{\left( {I;\,\,72^\circ } \right)}}\left( E \right) = A \Rightarrow {Q_{\left( {I;\,\,72^\circ } \right)}}\left( {AE} \right) = BA\] nên C đúng
\[{Q_{\left( {I;\,\,144^\circ } \right)}}\left( B \right) = D;\,\,{Q_{\left( {I;\,\,144^\circ } \right)}}\left( C \right) = E \Rightarrow {Q_{\left( {I;\,\,144^\circ } \right)}}\left( {BC} \right) = DE\] nên D sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]
Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”
TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn
TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn
Số phần tử của biến cố A là \[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]
Lời giải
Đáp án D
Phương pháp:
Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]
Cách giải:
Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.