Câu hỏi:
01/02/2023 112Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Tính tổng 2019S bằng cách nhận xét số hạng tổng quát của tổng này
Cách giải:
Ta có: \[S = C_{2018}^0 + \frac{1}{2}C_{2018}^1 + \frac{1}{3}C_{2018}^2 + ... + \frac{1}{{2018}}C_{2018}^{2017} + \frac{1}{{2019}}C_{2018}^{2018} = \sum\limits_{K = 0}^{2018} {\frac{1}{{k + 1}}C_{2018}^k} \]
\[ \Rightarrow 2019S = \sum\limits_{k = 0}^{2018} {\frac{{2019}}{{k + 1}}} C_{2018}^k = \sum\limits_{k = 0}^{2018} {\frac{{2019}}{{k + 1}}} .\frac{{2018!}}{{k!\left( {2018 - k} \right)!}} = \sum\limits_{k = 0}^{2018} {\frac{{2019!}}{{\left( {k + 1} \right)!\left( {2019 - \left( {k + 1} \right)} \right)!}}} = \sum\limits_{k = 0}^{2018} {C_{2019}^{k + 1}} \]
\[ = C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019} \Rightarrow 2019S + C_{2019}^0 + C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019} = {2^{2019}}\]
\[ \Rightarrow 2019 = {2^{2019}} - C_{2019}^0 = {2^{2019}} - 1 \Rightarrow S = \frac{{{2^{2019}} - 1}}{{2019}}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
Câu 7:
về câu hỏi!