Câu hỏi:
01/02/2023 186
Tính tổng \[S = C_{2018}^0 + \frac{1}{2}C_{2018}^1 + \frac{1}{3}C_{2018}^2 + ... + \frac{1}{{2018}}C_{2018}^{2017} + \frac{1}{{2019}}C_{2018}^{2018}\]
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Tính tổng 2019S bằng cách nhận xét số hạng tổng quát của tổng này
Cách giải:
Ta có: \[S = C_{2018}^0 + \frac{1}{2}C_{2018}^1 + \frac{1}{3}C_{2018}^2 + ... + \frac{1}{{2018}}C_{2018}^{2017} + \frac{1}{{2019}}C_{2018}^{2018} = \sum\limits_{K = 0}^{2018} {\frac{1}{{k + 1}}C_{2018}^k} \]
\[ \Rightarrow 2019S = \sum\limits_{k = 0}^{2018} {\frac{{2019}}{{k + 1}}} C_{2018}^k = \sum\limits_{k = 0}^{2018} {\frac{{2019}}{{k + 1}}} .\frac{{2018!}}{{k!\left( {2018 - k} \right)!}} = \sum\limits_{k = 0}^{2018} {\frac{{2019!}}{{\left( {k + 1} \right)!\left( {2019 - \left( {k + 1} \right)} \right)!}}} = \sum\limits_{k = 0}^{2018} {C_{2019}^{k + 1}} \]
\[ = C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019} \Rightarrow 2019S + C_{2019}^0 + C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019} = {2^{2019}}\]
\[ \Rightarrow 2019 = {2^{2019}} - C_{2019}^0 = {2^{2019}} - 1 \Rightarrow S = \frac{{{2^{2019}} - 1}}{{2019}}\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]
Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”
TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn
TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn
Số phần tử của biến cố A là \[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]
Lời giải
Đáp án D
Phương pháp:
Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]
Cách giải:
Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.