Câu hỏi:
01/02/2023 1,252
Phương trình \[\frac{{\sin 5x}}{{\sin x}} = 2\cos x\] có bao nhiêu nghiệm thuộc khoảng \[\left( {0;\,\,\pi } \right)\]?
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Tìm ĐKXĐ
- Biến đổi phương trình về dạng \[\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\]
Cách giải:
Điều kiện: \[\sin x \ne 0 \Leftrightarrow x \ne k\pi \]
Khi đó, phương trình \[ \Leftrightarrow \sin 5x = 2\sin x\cos x \Leftrightarrow \sin 5x = \sin 2x\]
\[ \Leftrightarrow \left[ \begin{array}{l}5x = 2x + k2\pi \\5x = \pi - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = k2\pi \\7x = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k2\pi }}{3}\\x = \frac{\pi }{7} + \frac{{k2\pi }}{7}\end{array} \right.\]
Nếu \[x = \frac{{k2\pi }}{3}\] thì \[x \in \left( {0;\,\,\pi } \right) \Rightarrow 0 < \frac{{k2\pi }}{3} < \pi \Leftrightarrow 0 < k < \frac{3}{2} \Rightarrow k = 1 \Rightarrow x = \frac{{2\pi }}{3}\,\,(TM)\]
Nếu \[x = \frac{\pi }{7} + \frac{{k2\pi }}{7}\] thì \[x \in \left( {0;\,\,\pi } \right) \Rightarrow 0 < \frac{\pi }{7} + \frac{{k2\pi }}{7} < \pi \Leftrightarrow 0 < \pi + k2\pi < 7\pi \Leftrightarrow - \frac{1}{2} < k < 3\]
\[ \Rightarrow k \in \left\{ {0;\,\,1;\,\,2} \right\} \Rightarrow x \in \left\{ {\frac{\pi }{7};\,\,\frac{{3\pi }}{7};\,\,\frac{{5\pi }}{7}} \right\}\]
Vậy phương trình đã cho có 4 nghiệm trong khoảng \[\left( {0;\,\,\pi } \right)\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]
Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”
TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn
TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn
Số phần tử của biến cố A là \[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]
Lời giải
Đáp án D
Phương pháp:
Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]
Cách giải:
Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.