Câu hỏi:

01/02/2023 248

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ sô phân biệt. Chọn ngẫu nhiên 1 số từ S. Xác suất chọn được số lớn hơn 2500 là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

- Tìm số phần tử của không gian mẫu \[n\left( \Omega \right)\]

- Tính số khả năng có lợi cho biến cố.

- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]

Cách giải:

Gọi số có số tự nhiên có bốn chữ số phân biệt là \[\overline {abcd} ,\,\,\left( {a,b,c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}} \right)\]

+ a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn

Nên có \[9.9.8.7 = 4536\] số. Hay số phần tử của không gian mẫu là \[n\left( \Omega \right) = 4536\]

Gọi A là biến cố \[\overline {abcd} > 2500\]

+ Nếu \[a \in \left\{ {3;4;5;6;7;8;9} \right\}\] thì số cách chọn 3 chữ số b, c, d \[A_9^3\] nên có \[7.A_9^3\] số

+ Nếu \[a = 2\]\[b = 5\] thì \[c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\] nên có \[A_8^2\] số

+ Nếu \[a = 2;\,\,b \in \left\{ {6;7;8;9} \right\}\] thì có \[A_8^2\] cách chọn c, d nên có \[4.A_8^2\] số

Số phần tử của biến cố A là \[n\left( A \right) = 7.A_9^3 + A_8^2 + 4.A_8^2 = 3808\]

Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2

Xem đáp án » 01/02/2023 2,899

Câu 2:

Tìm hệ số của \[{x^{16}}\] trong khai triển \[{\left( {{x^2} - 3x} \right)^{10}}\]

Xem đáp án » 31/01/2023 2,366

Câu 3:

Trong khai triển nhị thức \[{\left( {8{a^3} - \frac{b}{2}} \right)^6}\], số hạng thứ 4 là:

Xem đáp án » 31/01/2023 1,974

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].

a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).

b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?

Xem đáp án » 13/07/2024 1,925

Câu 5:

Nghiệm của phương trình \[2\cos x + 1 = 0\]

Xem đáp án » 31/01/2023 1,850

Câu 6:

Nếu \[2A_n^4 = 3A_{n - 1}^4\] thì n bằng

Xem đáp án » 01/02/2023 1,621

Câu 7:

Cho 6 chữ số 4,5,6,7,8,9. Hỏi có bao nhiêu số gồm 3 chữ số khác nhau được lập thành từ 6 chữ số đó?

Xem đáp án » 31/01/2023 1,138

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store