Câu hỏi:

01/02/2023 1,217

Hàm số nào sau đây là hàm số chẵn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án E

Phương pháp:

Hàm số \[y = f\left( x \right)\] được gọi là chẵn trên D nếu với \[x \in D\] thì \[ - x \in D\]\[f\left( { - x} \right) = f\left( x \right)\]

Cách giải:

Đáp án A: TXĐ: \[D = \mathbb{R}\]

\[f\left( { - x} \right) = \sin \left( { - 2x} \right) + 1 = - \sin 2x + 1 \ne f\left( x \right)\] nên hàm số này không chẵn không lẻ

Đáp án B: TXĐ: \[D = \mathbb{R}\]

\[f\left( { - x} \right) = \sin \left( { - x} \right).\cos \left( { - 2x} \right) = - \sin x.\cos 2x = - f\left( x \right)\] nên hàm số này lẻ

Đáp án C: TXĐ: \[D = \mathbb{R}\]

\[f\left( { - x} \right) = \sin \left( { - x} \right).\sin \left( { - 3x} \right) = \left( { - \sin x} \right).\left( { - \sin 3x} \right) = \sin x.\sin 3x = f\left( x \right)\] nên hàm số này chẵn

Đáp án D: TXĐ: \[D = \mathbb{R}\]

\[f\left( { - x} \right) = \sin \left( { - 2x} \right) + \sin \left( { - x} \right) = - \sin 2x - \sin x = - \left( {\sin 2x + \sin x} \right) = - f\left( x \right)\] nên hàm số này lẻ

Vậy có hai đáp án đúng là A và C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]

- Tính số khả năng có lợi cho biến cố.

- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]

Cách giải:

Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]

Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”

TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn

TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn

Số phần tử của biến cố A\[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]

Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]

Câu 2

Lời giải

Đáp án D

Phương pháp:

Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]

Cách giải:

Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP