Câu hỏi:

01/02/2023 3,966 Lưu

Tìm tập xác định của hàm số\[y = \sqrt {\frac{{1 + \cos x}}{{1 - \sin x}}} .\]

A. \[\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\]
B. \[\mathbb{R\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\] 
C. \[\mathbb{R}\]
D. \[\mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

+ \[\sqrt A \]xác định\[ \Leftrightarrow A \ge 0.\]

+ \[\frac{1}{A}\]xác định\[ \Leftrightarrow A \ne 0.\]

Cách giải:

Hàm số \[y = \sqrt {\frac{{1 + \cos x}}{{1 - \sin x}}} \]xác định\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{1 - \sin x}} \ge 0\left( 1 \right)\\1 - \sin x \ne 0\left( 2 \right)\end{array} \right..\]

Ta có: \[\left\{ \begin{array}{l}\cos x \ge - 1\,\,\forall x \Leftrightarrow \cos x + 1 \ge 0\\\sin x \le 1\,\,\forall x \Leftrightarrow 1 - \sin x \ge 0\end{array} \right. \Rightarrow \frac{{\cos x + 1}}{{1 - \sin x}} \ge 0\,\,\forall x\]thỏa mãn (2)

(1)luôn đúng.

Giải (2):\(1 - \sin x \ne 0 \Leftrightarrow \sin x \ne 1 \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right).\)

Vậy TXĐ\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Lời giải

Đáp án A

Phương pháp:

Xác định các điểm chung của hai mặt phẳng.

Media VietJack

Cách giải:

Ta có\[AB \cap CD = O \Rightarrow \left\{ \begin{array}{l}O \in AB \subset \left( {SAB} \right) \Rightarrow O \in \left( {SAB} \right)\\O \in CD \subset \left( {SCD} \right) \Rightarrow O \in \left( {SCD} \right)\end{array} \right..\]

\[ \Rightarrow O \in \left( {SAB} \right) \cap \left( {SCD} \right)\]

Lại có \[S \in \left( {SAB} \right) \cap \left( {SCD} \right).\]

Vậy \[\left( {SAB} \right) \cap \left( {SCD} \right) = SO.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = \cos x\]
B. \[y = \tan x\]
C. \[y = \cot x\]
D. \[y = \sin x\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = \sin \left( {\frac{\pi }{2} - x} \right)\]
B. \[y = \tan x\]
C. \[y = \sin x\]
D. \[y = \sin \left( {x + \frac{\pi }{6}} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP