Câu hỏi:

01/02/2023 459

Hình nào sau đây có vô số tâm đối xứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Dựa vào định nghĩa có tâm đối xứng.

Cách giải:

Hình vuông có 1 tâm đối xứng là tâm hình vuông.

Hình tròn có 1 tâm đối xứng là tâm hình tròn.

Đoạn thẳng có 1 tâm đối xứng là trung điểm của đoạn thẳng.

Đường thẳng là hình có vô số tâm đối xứng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Lời giải

Phương pháp:

Liệt kê các bộ ba số có tổng bằng 11.

Cách giải:

Lấy ngẫu nhiên 3 thẻ từ một hộp 8 thẻ \[ \Rightarrow n\left( \Omega \right) = C_8^3 = 56\]cách.

Gọi A là biến cố: “Tổng các số ghi trên ba thẻ đó bằng 11”.

\[ \Rightarrow A = \left\{ {\left( {1;2;8} \right),\left( {1;3;7} \right),\left( {1;4;6} \right),\left( {2;3;6} \right),\left( {2;4;5} \right)} \right\} \Rightarrow n\left( A \right) = 5.\]

Vậy\[P\left( A \right) = \frac{5}{{56}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hàm số nào sau đây đồng biến trên khoảng\[\left( {\frac{\pi }{2};\pi } \right)\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay