Câu hỏi:
01/02/2023 3,419Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Tam giác được tạo thành từ 3 điểm phân biệt không thẳng hàng.
Cách giải:
TH1: Chọn 2 điểm trong 20 điểm từ đường thẳng thứ nhất có \[C_{20}^2\]cách.
Chọn 1 điểm trong 18 điểm từ đường thẳng thứ hai có \[C_{18}^1 = 18\]cách.
\[ \Rightarrow \]Có \[18.C_{20}^2\]tam giác.
TH2: Chọn 1 điểm trong 20 điểm từ đường thẳng thứ nhất có \[C_{20}^1 = 20\]cách.
Chọn 2 điểm trong 18 điểm từ đường thẳng thứ hai có \[C_{18}^2\]cách.
\[ \Rightarrow \]Có \[20.C_{18}^2\]tam giác.
Vậy có tất cả \[18C_{20}^2 + 20C_{18}^2\]tam giác.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa S và I sao cho\[\frac{{SG}}{{SI}} = \frac{3}{5}\].
a) Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!