Câu hỏi:
01/02/2023 269Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
- Giải phương trình lượng giác cơ bản:\[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]
- Tìm các nghiệm thuộc\[\left( {0;3\pi } \right).\]
Cách giải:
\[\tan \left( {2x - \frac{{5\pi }}{6}} \right) + \sqrt 3 = 0 \Leftrightarrow \tan \left( {2x - \frac{{5\pi }}{6}} \right) = - \sqrt 3 \]
\[ \Leftrightarrow 2x - \frac{{5\pi }}{6} = - \frac{\pi }{3} + k\pi \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\]
Xét \[x \in \left( {0;3\pi } \right)\]ta có\[0 < \frac{\pi }{4} + \frac{{k\pi }}{2} < 3\pi \Leftrightarrow 0 < \frac{1}{4} + \frac{k}{2} < 3 \Leftrightarrow - \frac{1}{2} < k < \frac{{11}}{2}.\]
Mà\[k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1;2;3;4;5} \right\}.\]
Vậy số nghiệm của phương trình thỏa mãn điều kiện là 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa S và I sao cho\[\frac{{SG}}{{SI}} = \frac{3}{5}\].
a) Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!