Cho phương trình\[\cos 2\left( {x + \frac{\pi }{3}} \right) + 20\cos \left( {\frac{\pi }{6} - x} \right) + 11 = 0\]. Khi đặt\[t = \cos \left( {\frac{\pi }{6} - x} \right)\], phương trình đã cho trở thành phương trình nào dưới đây?
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
- Hai góc \[\frac{\pi }{6} - x\]và \[x + \frac{\pi }{3}\]là hai góc phụ nhau.
- Sử dụng công thức nhân đôi\[\cos 2x = 1 - 2{\sin ^2}x.\]
Cách giải:
Ta có:\[\cos 2\left( {x + \frac{\pi }{3}} \right) = 1 - 2{\sin ^2}\left( {x + \frac{\pi }{3}} \right).\]
Lại có\[sin\left( {x + \frac{\pi }{3}} \right) = \cos \left( {\frac{\pi }{2} - x - \frac{\pi }{3}} \right) = \cos \left( {\frac{\pi }{6} - x} \right) \Rightarrow \cos 2\left( {x + \frac{\pi }{3}} \right) = 1 - 2{\cos ^2}\left( {\frac{\pi }{6} - x} \right).\]
Phương trình
\[ \Leftrightarrow 1 - 2{\cos ^2}\left( {\frac{\pi }{6} - x} \right) + 20\cos \left( {\frac{\pi }{6} - x} \right) + 11 = 0\]
\[ \Leftrightarrow - 2{\cos ^2}\left( {\frac{\pi }{6} - x} \right) + 20\cos \left( {\frac{\pi }{6} - x} \right) + 12 = 0\]
\[ \Leftrightarrow - {\cos ^2}\left( {\frac{\pi }{6} - x} \right) + 10\cos \left( {\frac{\pi }{6} - x} \right) + 6 = 0\]
Đặt\[t = \cos \left( {\frac{\pi }{6} - x} \right)\], phương trình đã cho trở thành phương trình\[ - {t^2} + 10t + 6 = 0\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án A
Phương pháp:
Xét trên đường tròn lượng giác.

Cách giải:
Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]
Biểu diễn trên đường tròn lượng giác:
Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]
Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]
Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]
Câu 2
Lời giải
Đáp án A
Phương pháp:
Xác định các điểm chung của hai mặt phẳng.

Cách giải:
Ta có\[AB \cap CD = O \Rightarrow \left\{ \begin{array}{l}O \in AB \subset \left( {SAB} \right) \Rightarrow O \in \left( {SAB} \right)\\O \in CD \subset \left( {SCD} \right) \Rightarrow O \in \left( {SCD} \right)\end{array} \right..\]
\[ \Rightarrow O \in \left( {SAB} \right) \cap \left( {SCD} \right)\]
Lại có \[S \in \left( {SAB} \right) \cap \left( {SCD} \right).\]
Vậy \[\left( {SAB} \right) \cap \left( {SCD} \right) = SO.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.