Câu hỏi:

01/02/2023 4,946

Biết hệ số của số hạng chứa\[{x^2}\]trong khai triển\[{\left( {1 + 4x} \right)^n}\]là 3040. Số tự nhiên n bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng khai triển nhị thức Newton:\[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}.} \]

Cách giải:

\[{\left( {1 + 4x} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( {4x} \right)}^k}{1^{n - k}} = } \sum\limits_{k = 0}^n {C_n^k{4^k}{x^k}} .\]

Hệ số của số hạng chứa \[{x^2}\]trong khai triển trên là\[C_n^2{4^2} = 16C_n^2.\]

Theo bài ra ta có:\[16C_n^2 = 3040 \Leftrightarrow C_n^2 = 190 \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 190.\]

\[ \Leftrightarrow n\left( {n - 1} \right) = 380 \Leftrightarrow {n^2} - n - 380 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 20\,\,\,\left( {tm} \right)\\n = - 19\,\,\,\left( {ktm} \right)\end{array} \right.\]

Vậy\[n = 20.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Lời giải

Phương pháp:

Liệt kê các bộ ba số có tổng bằng 11.

Cách giải:

Lấy ngẫu nhiên 3 thẻ từ một hộp 8 thẻ \[ \Rightarrow n\left( \Omega \right) = C_8^3 = 56\]cách.

Gọi A là biến cố: “Tổng các số ghi trên ba thẻ đó bằng 11”.

\[ \Rightarrow A = \left\{ {\left( {1;2;8} \right),\left( {1;3;7} \right),\left( {1;4;6} \right),\left( {2;3;6} \right),\left( {2;4;5} \right)} \right\} \Rightarrow n\left( A \right) = 5.\]

Vậy\[P\left( A \right) = \frac{5}{{56}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP