Câu hỏi:
01/02/2023 924Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
- Tính số phần tử của không gian mẫu.
- Tính số phần tử của biến cố.
- Tính xác suất của biến cố.
Cách giải:
Có tất cả \[15 + 10 + 5 = 30\]câu hỏi.
Chọn 5 câu bất kì trong 30 câu hỏi được 1 đề thi nên số đề thi được tạo ra là\[C_{30}^5.\]
Gọi A là biến cố: “Lấy ra được một đề thi “Tốt””.
TH1: Có 2 câu hỏi ở mức độ khó \[ \Rightarrow \]Có \[C_5^2.C_{15}^1.C_{10}^2 + C_5^2.C_{15}^2.C_{10}^1\]đề.
TH2: Có 3 câu hỏi ở mức độ khó \[ \Rightarrow \]Có \[C_5^3.C_{15}^1.C_{10}^1\]đề.
\[ \Rightarrow n\left( A \right) = C_5^2.C_{15}^1.C_{10}^2 + C_5^2.C_{15}^2.C_{10}^1 + C_5^3.C_{15}^1.C_{10}^1 = 18750\]
\[ \Rightarrow P\left( A \right) = \frac{{18750}}{{C_{30}^5}} = \frac{{3125}}{{23751}}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa S và I sao cho\[\frac{{SG}}{{SI}} = \frac{3}{5}\].
a) Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!