Câu hỏi:

12/07/2024 306

Cho n là số nguyên dương chẵn bất kì, chứng minh

\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Sử dụng khai triển\[{\left( {x + 1} \right)^n}\], thay \[x = 1\]\[x = - 1.\]

Cách giải:

\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]

\[ \Leftrightarrow \frac{{n!}}{{1!\left( {n - 1} \right)!}} + \frac{{n!}}{{3!\left( {n - 3} \right)!}} + \frac{{n!}}{{5!\left( {n - 5} \right)!}} + ... + \frac{{n!}}{{\left( {n - 1} \right)!1!}} = {2^{n - 1}}\]

\[ \Leftrightarrow C_n^1 + C_n^3 + C_n^5 + ... + C_n^{n - 1} = {2^{n - 1}}\]

Xét khai triển\[{\left( {x + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^k}.} \]

Thay \[x = 1\]ta có\[{\left( {1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} \Leftrightarrow {2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\,\,\,\left( 1 \right).\]

Thay \[x = - 1\]ta có\[{\left( { - 1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {\left( { - 1} \right)^k} \Leftrightarrow 0 = C_n^0 - C_n^1 + C_n^2 + ... - C_n^{n - 1} + C_n^n\,\,\,\left( 2 \right)\]

Trừ vế theo vế của (1) và (2) ta có\[{2^n} = 2\left( {C_n^1 + C_n^3 + ... + C_n^{n - 1}} \right) \Leftrightarrow C_n^1 + C_n^3 + ... + C_n^{n - 1} = {2^{n - 1}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số\(y = \cos 2x\)trên đoạn\(\left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right].\)Tính giá trị biểu thức\(T = M - 2m.\)

Xem đáp án » 01/02/2023 14,306

Câu 2:

Cho hình chóp S.ABCD, biết AC cắt BD tại M, AB cắt CD tại O. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) .

Xem đáp án » 01/02/2023 11,553

Câu 3:

b)  Một hộp đựng tám thẻ được ghi từ 1 đến 8. Lấy ngẫu nhiên từ hộp đó ba thẻ, tính xác suất để tổng các số ghi trên ba thẻ đó bằng 11.

Xem đáp án » 13/07/2024 7,461

Câu 4:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa SI sao cho\[\frac{{SG}}{{SI}} = \frac{3}{5}\].

a)  Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).

b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).

Xem đáp án » 13/07/2024 6,465

Câu 5:

Hàm số nào sau đây đồng biến trên khoảng\[\left( {\frac{\pi }{2};\pi } \right)\]?

Xem đáp án » 01/02/2023 6,447

Câu 6:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK = 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số\[\frac{{FA}}{{FD}}.\]

Xem đáp án » 01/02/2023 6,299

Câu 7:

Trong các hàm số sau, hàm số nào là hàm số chẵn trên\[\mathbb{R}\]?

Xem đáp án » 01/02/2023 5,881

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store