Cho n là số nguyên dương chẵn bất kì, chứng minh
\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]
                                    
                                                                                                                        Cho n là số nguyên dương chẵn bất kì, chứng minh
\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]
Quảng cáo
Trả lời:
Phương pháp:
Sử dụng khai triển\[{\left( {x + 1} \right)^n}\], thay \[x = 1\]và\[x = - 1.\]
Cách giải:
\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]
\[ \Leftrightarrow \frac{{n!}}{{1!\left( {n - 1} \right)!}} + \frac{{n!}}{{3!\left( {n - 3} \right)!}} + \frac{{n!}}{{5!\left( {n - 5} \right)!}} + ... + \frac{{n!}}{{\left( {n - 1} \right)!1!}} = {2^{n - 1}}\]
\[ \Leftrightarrow C_n^1 + C_n^3 + C_n^5 + ... + C_n^{n - 1} = {2^{n - 1}}\]
Xét khai triển\[{\left( {x + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^k}.} \]
Thay \[x = 1\]ta có\[{\left( {1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} \Leftrightarrow {2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\,\,\,\left( 1 \right).\]
Thay \[x = - 1\]ta có\[{\left( { - 1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {\left( { - 1} \right)^k} \Leftrightarrow 0 = C_n^0 - C_n^1 + C_n^2 + ... - C_n^{n - 1} + C_n^n\,\,\,\left( 2 \right)\]
Trừ vế theo vế của (1) và (2) ta có\[{2^n} = 2\left( {C_n^1 + C_n^3 + ... + C_n^{n - 1}} \right) \Leftrightarrow C_n^1 + C_n^3 + ... + C_n^{n - 1} = {2^{n - 1}}.\]Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
 - Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
 - Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
 - Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án A
Phương pháp:
Xét trên đường tròn lượng giác.

Cách giải:
Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]
Biểu diễn trên đường tròn lượng giác:
Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]
Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]
Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]
Câu 2
Lời giải
Đáp án A
Phương pháp:
Xác định các điểm chung của hai mặt phẳng.

Cách giải:
Ta có\[AB \cap CD = O \Rightarrow \left\{ \begin{array}{l}O \in AB \subset \left( {SAB} \right) \Rightarrow O \in \left( {SAB} \right)\\O \in CD \subset \left( {SCD} \right) \Rightarrow O \in \left( {SCD} \right)\end{array} \right..\]
\[ \Rightarrow O \in \left( {SAB} \right) \cap \left( {SCD} \right)\]
Lại có \[S \in \left( {SAB} \right) \cap \left( {SCD} \right).\]
Vậy \[\left( {SAB} \right) \cap \left( {SCD} \right) = SO.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.