Câu hỏi:
12/07/2024 3211) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^3} - \frac{1}{x}} \right)^{12}},x \ne 0\].
2) Chứng minh rằng \[{7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + {3^2}{.7^{15}}.C_{17}^2 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17} = {10^{17}}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp
1) Sử dụng công thức tính số hạng tổng quát \[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\].
2) Sử dụng khai triển \[{\left( {a + b} \right)^n}\] và chọn a, b, n là các số thích hợp, từ đó quy ra tổng.
Cách giải
1) Tìm số hạng không chứa x trong khai triển của \[{\left( {2{x^3} - \frac{1}{x}} \right)^{12}},x \ne 0\].
Ta có: \[{T_{k + 1}} = C_{12}^k{\left( {2{x^3}} \right)^{12 - k}}.{\left( { - \frac{1}{x}} \right)^k} = C_{12}^k{.2^{12 - k}}.{x^{3\left( {12 - k} \right)}}.\frac{{{{\left( { - 1} \right)}^k}}}{{{x^k}}} = C_{12}^k.{\left( { - 1} \right)^k}{.2^{12 - k}}.{x^{36 - 3k - k}} = C_{12}^k.{\left( { - 1} \right)^k}{.2^{12 - k}}.{x^{36 - 4k}}\].
Số hạng không chứa x nếu \[36 - 4k = 0 \Leftrightarrow k = 9\].
Vậy số hạng không chứa x là \[C_{12}^9.{\left( { - 1} \right)^9}{.2^{12 - 9}} = - 1760\].
2) Chứng minh rằng \[{7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + {3^2}{.7^{15}}.C_{17}^2 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17} = {10^{17}}\].
Số hạng tổng quát \[C_{17}^k{.7^{17 - k}}{.3^k}\], chọn \[n = 17,a = 7,b = 3\].
Xét tổng: \[{\left( {7 + 3} \right)^{17}} = C_{17}^0{.7^{17 - 0}}{.3^0} + C_{17}^1{.7^{17 - 1}}{.3^1} + ... + C_{17}^{16}{.7^{17 - 16}}{.3^{16}} + C_{17}^{17}{.7^0}{.3^{17}}\].
Do đó \[{10^{17}} = {7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17}\] (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và SD.
1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\]. Chứng minh rằng đường thẳng MN song song với mặt phẳng \[\left( {SAB} \right)\].
Câu 2:
Câu 3:
1) Một hộp chứa 3 quả cầu đen và 2 quả cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu.
2) Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là \[\frac{1}{5}\] và \[\frac{2}{7}\] và hai người ném một cách độc lập với nhau.
a) Tính xác suất để hai người cùng ném bóng trúng rổ.
b) Tính xác suất để có ít nhất một người ném không trúng rổ.
Câu 4:
Câu 5:
Giải các phương trình sau:
1) \[\cos 2x = 3\sin x + 1\]. 2) \[\cos 3x + \cos x - \cos 2x = 0\].
về câu hỏi!