Câu hỏi:

11/07/2024 403

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp

c) Phương pháp xác định giao điểm của đường thẳng a với mặt phẳng \[\left( \alpha \right)\].

- Tìm mặt phẳng phụ \[\left( P \right)\] chứa a.

- Tìm giao tuyến \[d = \left( P \right) \cap \left( \alpha \right)\]

- Tìm giao điểm của d với a.

Sử dụng định lý Ta-lét để tính tỉ số \[\frac{{IK}}{{IG}}\].

Cách giải

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

*) Tìm giao điểm của IG với \[\left( {OMN} \right)\].

+ Gọi P là trung điểm của AB. Dễ thấy \[IG \subset \left( {SIP} \right)\].

+ Ta tìm giao tuyến của \[\left( {SIP} \right)\] với \[\left( {OMN} \right)\].

I, P là trung điểm của CD, AB nên \[O \in IP \subset \left( {SIP} \right)\].

\[O \in \left( {OMN} \right) \Rightarrow O \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 1 \right)\].

Trong \[\left( {SCD} \right)\], gọi \[H = SI \cap MN \Rightarrow \left\{ \begin{array}{l}H \in SI \subset \left( {SIP} \right)\\H \in MN \subset \left( {OMN} \right)\end{array} \right. \Rightarrow H \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 2 \right)\].

Từ (1) và (2) suy ra \[OH = \left( {SIP} \right) \cap \left( {OMN} \right)\].

+ Trong \[\left( {SIP} \right)\], gọi \[K = OH \cap IG\].

Khi đó \[\left\{ \begin{array}{l}K \in OH \subset \left( {OMN} \right)\\K \in IG\end{array} \right. \Rightarrow K = IG \cap \left( {OMN} \right)\].

*) Tính \[\frac{{IK}}{{IG}}\].

Trong \[\Delta SCI\]M là trung điểm SC\[MH//CI\] nên H là trung điểm của SI.

Trong \[\Delta SIP\]\[\frac{{SH}}{{SI}} = \frac{1}{2}\]\[\frac{{PO}}{{PI}} = \frac{1}{2}\] nên \[\frac{{SH}}{{SI}} = \frac{{PO}}{{PI}} = \frac{1}{2}\].

Theo định lý Ta – let ta có \[OH//SP\] hay \[OK//PG\].

Trong \[\Delta IPG\]O là trung điểm IP\[OK//PG\] nên K là trung điểm IO.

Vậy \[\frac{{IK}}{{IG}} = \frac{1}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp

a) - Sử dụng định lý: \[\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\a//b\\\left( P \right) \cap \left( Q \right) = d\end{array} \right. \Rightarrow d//a//b\].

- Sử dụng định lý: \[\left\{ \begin{array}{l}a \not\subset \left( P \right)\\a//b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( P \right)\].

Media VietJack

Cách giải

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right)\]. Chứng minh rằng đường thẳng MN song song với mặt phẳng \[\left( {SAB} \right)\].

+ Ta có: \[\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\AB//CD\\\left( {SAB} \right) \cap \left( {SCD} \right) = Sx\end{array} \right. \Rightarrow Sx//AB//CD\].

Do đó giao tuyến của \[\left( {SAB} \right)\]\[\left( {SCD} \right)\] là đường thẳng Sx đi qua S và song song với AB, CD.

+ Dễ thấy \[MN \not\subset \left( {SAB} \right)\]

Trong tam giác SCDM, N là trung điểm SC, SD nên MN là đường trung bình của tam giác SCD.

Khi đó \[MN//CD\], mà \[CD//AB\] nên \[MN//AB\].

\[AB \subset \left( {SAB} \right)\] nên \[MN//\left( {SAB} \right)\] (đpcm).

Lời giải

Phương pháp

b) Sử dụng định lý giao tuyến ba mặt phẳng: Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến, nếu chúng không đồng quy thì song song.

2) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {OMN} \right)\]. Thiết diện là hình gì, tại sao?

Xét ba mặt phẳng \[\left( {OMN} \right),\left( {SCD} \right),\left( {ABCD} \right)\] có:

\[\left\{ \begin{array}{l}\left( {OMN} \right) \cap \left( {SCD} \right) = MN\\\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {OMN} \right) \cap \left( {ABCD} \right) = Ot\\MN//CD\end{array} \right. \Rightarrow MN//CD//Ot\].

Do đó \[\left( {OMN} \right) \cap \left( {ABCD} \right) = Ot\] là đường thẳng đi qua O và song song với CD.

Kẻ đường thẳng qua O và song song CD cắt AD, BC lần lượt tại E, F.

Khi đó \[\left\{ \begin{array}{l}\left( {OMN} \right) \cap \left( {SCD} \right) = MN\\\left( {OMN} \right) \cap \left( {SAD} \right) = NE\\\left( {OMN} \right) \cap \left( {ABCD} \right) = EF\\\left( {OMN} \right) \cap \left( {SBC} \right) = MF\end{array} \right.\].

Vậy thiết diện là tứ giác MNEF.

Ngoài ra \[MN//CD,EF//CD \Rightarrow MN//EF\].

Vậy thiết diện là hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP