Câu hỏi:

13/07/2024 1,726

2)    Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {OMN} \right)\]. Thiết diện là hình gì, tại sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp

b) Sử dụng định lý giao tuyến ba mặt phẳng: Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến, nếu chúng không đồng quy thì song song.

2) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {OMN} \right)\]. Thiết diện là hình gì, tại sao?

Xét ba mặt phẳng \[\left( {OMN} \right),\left( {SCD} \right),\left( {ABCD} \right)\] có:

\[\left\{ \begin{array}{l}\left( {OMN} \right) \cap \left( {SCD} \right) = MN\\\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {OMN} \right) \cap \left( {ABCD} \right) = Ot\\MN//CD\end{array} \right. \Rightarrow MN//CD//Ot\].

Do đó \[\left( {OMN} \right) \cap \left( {ABCD} \right) = Ot\] là đường thẳng đi qua O và song song với CD.

Kẻ đường thẳng qua O và song song CD cắt AD, BC lần lượt tại E, F.

Khi đó \[\left\{ \begin{array}{l}\left( {OMN} \right) \cap \left( {SCD} \right) = MN\\\left( {OMN} \right) \cap \left( {SAD} \right) = NE\\\left( {OMN} \right) \cap \left( {ABCD} \right) = EF\\\left( {OMN} \right) \cap \left( {SBC} \right) = MF\end{array} \right.\].

Vậy thiết diện là tứ giác MNEF.

Ngoài ra \[MN//CD,EF//CD \Rightarrow MN//EF\].

Vậy thiết diện là hình thang.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp

a) - Sử dụng định lý: \[\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\a//b\\\left( P \right) \cap \left( Q \right) = d\end{array} \right. \Rightarrow d//a//b\].

- Sử dụng định lý: \[\left\{ \begin{array}{l}a \not\subset \left( P \right)\\a//b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( P \right)\].

Media VietJack

Cách giải

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right)\]. Chứng minh rằng đường thẳng MN song song với mặt phẳng \[\left( {SAB} \right)\].

+ Ta có: \[\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\AB//CD\\\left( {SAB} \right) \cap \left( {SCD} \right) = Sx\end{array} \right. \Rightarrow Sx//AB//CD\].

Do đó giao tuyến của \[\left( {SAB} \right)\]\[\left( {SCD} \right)\] là đường thẳng Sx đi qua S và song song với AB, CD.

+ Dễ thấy \[MN \not\subset \left( {SAB} \right)\]

Trong tam giác SCDM, N là trung điểm SC, SD nên MN là đường trung bình của tam giác SCD.

Khi đó \[MN//CD\], mà \[CD//AB\] nên \[MN//AB\].

\[AB \subset \left( {SAB} \right)\] nên \[MN//\left( {SAB} \right)\] (đpcm).

Lời giải

Phương pháp

1)    Sử dụng công thức tính số hạng tổng quát \[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\].

2)    Sử dụng khai triển \[{\left( {a + b} \right)^n}\] và chọn a, b, n là các số thích hợp, từ đó quy ra tổng.

Cách giải

1) Tìm số hạng không chứa x trong khai triển của \[{\left( {2{x^3} - \frac{1}{x}} \right)^{12}},x \ne 0\].

Ta có: \[{T_{k + 1}} = C_{12}^k{\left( {2{x^3}} \right)^{12 - k}}.{\left( { - \frac{1}{x}} \right)^k} = C_{12}^k{.2^{12 - k}}.{x^{3\left( {12 - k} \right)}}.\frac{{{{\left( { - 1} \right)}^k}}}{{{x^k}}} = C_{12}^k.{\left( { - 1} \right)^k}{.2^{12 - k}}.{x^{36 - 3k - k}} = C_{12}^k.{\left( { - 1} \right)^k}{.2^{12 - k}}.{x^{36 - 4k}}\].

Số hạng không chứa x nếu \[36 - 4k = 0 \Leftrightarrow k = 9\].

Vậy số hạng không chứa x\[C_{12}^9.{\left( { - 1} \right)^9}{.2^{12 - 9}} = - 1760\].

2) Chứng minh rằng \[{7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + {3^2}{.7^{15}}.C_{17}^2 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17} = {10^{17}}\].

Số hạng tổng quát \[C_{17}^k{.7^{17 - k}}{.3^k}\], chọn \[n = 17,a = 7,b = 3\].

Xét tổng: \[{\left( {7 + 3} \right)^{17}} = C_{17}^0{.7^{17 - 0}}{.3^0} + C_{17}^1{.7^{17 - 1}}{.3^1} + ... + C_{17}^{16}{.7^{17 - 16}}{.3^{16}} + C_{17}^{17}{.7^0}{.3^{17}}\].

Do đó \[{10^{17}} = {7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17}\] (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP