Câu hỏi:

13/07/2024 3,603

Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]

- Tính số khả năng có lợi cho biến cố \[A\] đã cho.

- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].

Cách giải:

Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].

Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”

TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.

TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.

TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.

Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].

Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.

Xem đáp án » 13/07/2024 2,773

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[G\] là trọng tâm của tam giác \[SAD\]. Lấy điểm \[M\] thuộc cạnh \[AB\] sao cho \[AB = 3AM\].

Xem đáp án » 13/07/2024 1,925

Câu 3:

2) Chứng minh rằng đường thẳng \[MG\] song song với mặt phẳng \[\left( {SBC} \right)\].

Xem đáp án » 12/07/2024 1,319

Câu 4:

Cho một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu tiên \[{u_1} = 1\] và tổng 100 số hạng đầu tiên bằng 24850. Tính \[S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + \frac{1}{{{u_3}{u_4}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\].

Xem đáp án » 12/07/2024 1,268

Câu 5:

Giải phương trình lượng giác sau: \[\frac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\].

Xem đáp án » 13/07/2024 951

Câu 6:

Tìm số hạng không chứa \[x\] trong khai triển của biểu thức: \[{\left( {2{x^3} - \frac{2}{{{x^2}}}} \right)^5}\].

Xem đáp án » 13/07/2024 888