Câu hỏi:
13/07/2024 3,086
Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
- Đếm các số chẵn có 5 chữ số khác nhau mà có đúng hai chữ số lẻ.
- Đếm các số chẵn có 5 chữ số khác nhau mà có hai chữ số lẻ đứng cạnh nhau.
- Trừ các kết quả cho nhau ta được đáp số.
Cách giải:
Gọi số có năm chữ số có dạng \[\overline {abcde} \].
TH1: \[e = 0\] có 1 cách chọn.
Chọn 2 chữ số lẻ và 2 chữ số chẵn và xếp vị trí cho chúng có \[C_5^2.C_4^2.4!\] cách chọn.
Do đó có \[C_5^2.C_4^2.4!\] số.
TH2: \[e \in \left\{ {2;4;6;8} \right\}\] có 4 cách chọn.
+) Nếu \[a\] chẵn, \[a \ne 0,{\rm{ }}a \ne e\] thì có 3 cách chọn.
Số cách chọn 3 chữ số còn lại (1 chữ số chẵn và 2 chữ số lẻ) và xếp vị trí cho chúng là \[C_3^1.C_5^2.3!\] cách chọn.
Do đó có \[3.C_3^1.C_5^2.3!\] số.
+) Nếu \[a\] lẻ thì có 5 cách chọn.
Số cách chọn 3 chữ số còn lại (2 chữ số chẵn và 1 chữ số lẻ) và xếp vị trí cho chúng là \[C_4^2.C_4^1.3!\] cách chọn.
Do đó có \[5.C_4^2.C_4^1.3!\] số.
Khi đó số các số chẵn có 5 chữ số khác nhau mà chỉ có đúng 2 chữ số lẻ là
\[C_5^2.C_4^2.4! + 4.\left( {3.C_3^1.C_5^2.3! + 5.C_4^2.C_4^1.3!} \right) = 6480\] số.
Ta tính các số chẵn có 5 chữ số khác nhau chỉ có 2 chữ số lẻ mà chúng đứng cạnh nhau.
Coi hai chữ số lẻ đứng cạnh nhau là một chữ số \[A\], có \[A_5^2\] cách chọn và sắp xếp vị trí của hai chữ số trong \[A\].
Số có dạng \[\overline {abcd} \] với \[a,b,c,d \in \left\{ {A;0;2;4;6;8} \right\}\].
+) Nếu \[a = A\] thì có \[A_5^3\] cách chọn \[b,c,d\].
+) Nếu \[a \ne A,{\rm{ }}a \ne 0\] thì có 4 cách chọn.
\[A\] có thể đứng ở bị trí \[b\] hoặc \[c\] nên có 2 cách xếp.
Có \[A_4^2\] cách chọn và sắp xếp hai chữ số còn lại.
Do đó có \[A_5^2\left( {A_5^3 + 4.2.A_4^2} \right) = 3120\]
Vậy có \[6480 - 3120 = 3360\] số.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố \[A\] đã cho.
- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
Cách giải:
Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].
Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”
TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.
TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.
TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.
Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].
Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].
Lời giải
Phương pháp:
a) Sử dụng định lí ba giao tuyến song song: \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\].
Cách giải:
1) Tìm giao tuyến của mặt phẳng \[\left( {SAD} \right)\] và mặt phẳng \[\left( {GBC} \right)\]. Tìm giao điểm \[H\] của đường thẳng \[BC\] với mặt phẳng \[\left( {SGM} \right)\].
Dễ thấy \[G \in \left( {GBC} \right) \cap \left( {SAD} \right)\].
Xét các mặt phẳng: \[\left( {GBC} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {ABCD} \right)\] có:
\[\left\{ \begin{array}{l}\left( {GBC} \right) \cap \left( {SAD} \right) = Gx\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\\left( {ABCD} \right) \cap \left( {GBC} \right) = BC\\BC//AD\end{array} \right. \Rightarrow Gx//AB//CD\]
Vậy \[\left( {SAD} \right) \cap \left( {GBC} \right) = Gx\] là đường thẳng đi qua \[G\] và song song \[AD\].
Gọi \[I\] là trung điểm \[AD\], khi đó \[\left( {SGM} \right) \equiv \left( {SIM} \right)\].
Trong \[\left( {ABCD} \right)\], gọi \[H = IM \cap BC \Rightarrow \left\{ \begin{array}{l}H \in IM \subset \left( {SIM} \right)\\H \in BC\end{array} \right. \Rightarrow H = BC \cap \left( {SMG} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.