Quảng cáo
Trả lời:
Phương pháp:
- Sử dụng công thức cộng \[\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\] biến đổi phương trình về dạng tích.
- Giải phương trình và đối chiếu điều kiện, kết luận nghiệm.
Cách giải:
ĐK: \[\sin 3x \ne 0 \Leftrightarrow 3x \ne k\pi \Leftrightarrow x \ne \frac{{k\pi }}{3}\]
\[{\rm{PT}} \Rightarrow \sin x + \sin 2x = - \sin 3x \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = 0\]
\[ \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 0 \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\2\cos x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.,{\rm{ }}k \in \mathbb{Z}\]
Biểu diễn các nghiệm trên đường tròn lượng giác ta được:

Quan sát hình vẽ ta thấy phương trình có nghiệm \[x = \frac{\pi }{2} + k\pi ,{\rm{ }}k \in \mathbb{Z}\] (hai điểm màu xanh).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố \[A\] đã cho.
- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
Cách giải:
Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].
Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”
TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.
TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.
TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.
Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].
Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].
Lời giải
Phương pháp:
a) Sử dụng định lí ba giao tuyến song song: \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\].
Cách giải:

1) Tìm giao tuyến của mặt phẳng \[\left( {SAD} \right)\] và mặt phẳng \[\left( {GBC} \right)\]. Tìm giao điểm \[H\] của đường thẳng \[BC\] với mặt phẳng \[\left( {SGM} \right)\].
Dễ thấy \[G \in \left( {GBC} \right) \cap \left( {SAD} \right)\].
Xét các mặt phẳng: \[\left( {GBC} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {ABCD} \right)\] có:
\[\left\{ \begin{array}{l}\left( {GBC} \right) \cap \left( {SAD} \right) = Gx\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\\left( {ABCD} \right) \cap \left( {GBC} \right) = BC\\BC//AD\end{array} \right. \Rightarrow Gx//AB//CD\]
Vậy \[\left( {SAD} \right) \cap \left( {GBC} \right) = Gx\] là đường thẳng đi qua \[G\] và song song \[AD\].
Gọi \[I\] là trung điểm \[AD\], khi đó \[\left( {SGM} \right) \equiv \left( {SIM} \right)\].
Trong \[\left( {ABCD} \right)\], gọi \[H = IM \cap BC \Rightarrow \left\{ \begin{array}{l}H \in IM \subset \left( {SIM} \right)\\H \in BC\end{array} \right. \Rightarrow H = BC \cap \left( {SMG} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.