Câu hỏi:

13/07/2024 758

Giải phương trình lượng giác sau: \[\frac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\].

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Sử dụng công thức cộng \[\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\] biến đổi phương trình về dạng tích.

- Giải phương trình và đối chiếu điều kiện, kết luận nghiệm.

Cách giải:

ĐK: \[\sin 3x \ne 0 \Leftrightarrow 3x \ne k\pi \Leftrightarrow x \ne \frac{{k\pi }}{3}\]

\[{\rm{PT}} \Rightarrow \sin x + \sin 2x = - \sin 3x \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = 0\]

\[ \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 0 \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\2\cos x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.,{\rm{ }}k \in \mathbb{Z}\]

Biểu diễn các nghiệm trên đường tròn lượng giác ta được:

Media VietJack

Quan sát hình vẽ ta thấy phương trình có nghiệm \[x = \frac{\pi }{2} + k\pi ,{\rm{ }}k \in \mathbb{Z}\] (hai điểm màu xanh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.

Xem đáp án » 13/07/2024 2,301

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[G\] là trọng tâm của tam giác \[SAD\]. Lấy điểm \[M\] thuộc cạnh \[AB\] sao cho \[AB = 3AM\].

Xem đáp án » 13/07/2024 1,730

Câu 3:

Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.

Xem đáp án » 13/07/2024 1,651

Câu 4:

2) Chứng minh rằng đường thẳng \[MG\] song song với mặt phẳng \[\left( {SBC} \right)\].

Xem đáp án » 12/07/2024 897

Câu 5:

Cho một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu tiên \[{u_1} = 1\] và tổng 100 số hạng đầu tiên bằng 24850. Tính \[S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + \frac{1}{{{u_3}{u_4}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\].

Xem đáp án » 12/07/2024 760

Câu 6:

Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].

 Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.

Xem đáp án » 02/02/2023 508

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store