Câu hỏi:
03/02/2023 852Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án A
Cách giải:
Vẽ \[DH \bot AB{\rm{ }}\left( {H \in AB} \right)\] ta có \[DH = \frac{{\sqrt 3 }}{2}.\]
Phương trình CD: \[y = \pm \frac{{\sqrt 3 }}{2}.\]
TH1: Phương trình CD: \[y = \frac{{\sqrt 3 }}{2}.\]
Khi đó tọa độ điểm C, D là nghiệm của phương trình
\[\cos y = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + m2\pi \\x = - \frac{\pi }{6} + n2\pi \end{array} \right.\left( {m,n \in \mathbb{Z}} \right).\]
\[ \Rightarrow CD = \left| {{x_C} - {x_D}} \right| = \left| {\frac{\pi }{6} + m2\pi + \frac{\pi }{6} - n2\pi } \right| = \left| {\frac{\pi }{3} + \left( {m - n} \right)2\pi } \right|\]
\[ \Rightarrow \frac{\pi }{3} + \left( {m - n} \right)2\pi < \frac{\pi }{2} \Leftrightarrow \frac{1}{3} + 2\left( {m - n} \right) < \frac{1}{2} \Leftrightarrow m - n < \frac{1}{{12}}\]
Chọn \[m - n = 0 \Leftrightarrow CD = \frac{\pi }{3} \Rightarrow AB = \frac{{2\pi }}{3}.\]
TH2: Phương trình CD: \[y = - \frac{{\sqrt 3 }}{2} \Rightarrow \] Tọa độ của C, D là nghiệm của phương trình
\[\cos x = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + m'2\pi \\x = - \frac{{5\pi }}{6} + n'2\pi \end{array} \right.\left( {m',n' \in \mathbb{Z}} \right)\]
\[ \Rightarrow CD = \left| {{x_C} - {x_D}} \right| = \left| {\frac{{3\pi }}{2} + \left( {m' - n'} \right)2\pi } \right|\]
Khi \[m' - n' = 0 \Rightarrow CD = \frac{{3\pi }}{2} > \frac{\pi }{2}\left( {ktm} \right)\]
Khi \[m' - n' = - 1 \Rightarrow CD = \frac{\pi }{2} = \frac{\pi }{2}\left( {ktm} \right)\]
Vậy \[AB = \frac{{2\pi }}{3}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB//CD\] và \[AB = 2CD\]. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\].
a) Chứng minh đường thẳng AC song song với mặt phẳng \[\left( {BEF} \right)\].
b) Xác định giao điểm N của đường thẳng SD với mặt phẳng \[\left( {BEF} \right)\] , từ đó chỉ ra thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\].
c) Gọi \[\left( \alpha \right)\] là mặt phẳng qua O và song song với mặt phẳng \[\left( {BEF} \right)\]. Gọi P là giao điểm của SD với \[\left( \alpha \right)\]. Tính tỉ số \[\frac{{SP}}{{SD}}\].
Câu 2:
Câu 3:
Cho hình hộp \[ABCD.A',B',C',D'\]. Gọi G và G’ là trọng tâm các tam giác \[BDA'\] và \[A'CC'\].
Khẳng định nào sau đây đúng?
Câu 4:
Câu 6:
Câu 7:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận