Câu hỏi:

03/02/2023 894

Hình thang ABCD có đáy \[AB = 2CD\], trong đó A, B thuộc trục hoành C, D thuộc đồ thị hàm số \[y = \cos x\]. Biết đường cao của hình thang ABCD bằng \[\frac{{\sqrt 3 }}{2}\]\[AB < \pi \]. Tính độ dài cạnh đáy AB ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cách giải:

Vẽ \[DH \bot AB{\rm{ }}\left( {H \in AB} \right)\] ta có \[DH = \frac{{\sqrt 3 }}{2}.\]

Phương trình CD: \[y = \pm \frac{{\sqrt 3 }}{2}.\]

TH1: Phương trình CD: \[y = \frac{{\sqrt 3 }}{2}.\]

Khi đó tọa độ điểm C, D là nghiệm của phương trình

\[\cos y = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + m2\pi \\x = - \frac{\pi }{6} + n2\pi \end{array} \right.\left( {m,n \in \mathbb{Z}} \right).\]

 Media VietJack

\[ \Rightarrow CD = \left| {{x_C} - {x_D}} \right| = \left| {\frac{\pi }{6} + m2\pi + \frac{\pi }{6} - n2\pi } \right| = \left| {\frac{\pi }{3} + \left( {m - n} \right)2\pi } \right|\]

\[ \Rightarrow \frac{\pi }{3} + \left( {m - n} \right)2\pi < \frac{\pi }{2} \Leftrightarrow \frac{1}{3} + 2\left( {m - n} \right) < \frac{1}{2} \Leftrightarrow m - n < \frac{1}{{12}}\]

Chọn \[m - n = 0 \Leftrightarrow CD = \frac{\pi }{3} \Rightarrow AB = \frac{{2\pi }}{3}.\]

TH2: Phương trình CD: \[y = - \frac{{\sqrt 3 }}{2} \Rightarrow \] Tọa độ của C, D là nghiệm của phương trình

\[\cos x = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + m'2\pi \\x = - \frac{{5\pi }}{6} + n'2\pi \end{array} \right.\left( {m',n' \in \mathbb{Z}} \right)\]

\[ \Rightarrow CD = \left| {{x_C} - {x_D}} \right| = \left| {\frac{{3\pi }}{2} + \left( {m' - n'} \right)2\pi } \right|\]

Khi \[m' - n' = 0 \Rightarrow CD = \frac{{3\pi }}{2} > \frac{\pi }{2}\left( {ktm} \right)\]

Khi \[m' - n' = - 1 \Rightarrow CD = \frac{\pi }{2} = \frac{\pi }{2}\left( {ktm} \right)\]

Vậy \[AB = \frac{{2\pi }}{3}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

a) Một đường thẳng song song với một mặt phẳng khi nó song song với một đường nằm trong mặt phẳng đó.

b) Xác định điểm chung của SD với \[\left( {BEF} \right),\] từ đó xác định thiết diện.

c) Xác định \[\left( \alpha \right).\] Sử dụng định lí Ta-lét.

Cách giải:

a) Áp dụng định lí Ta-lét đảo ta có \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3} \Rightarrow EF{\rm{ // }}AC.\]

\[EF \subset \left( {BEF} \right) \Rightarrow AC{\rm{ // }}\left( {BEF} \right).\]

b) Trong \[\left( {SAC} \right)\] gọi

\[I = SO \cap EF \Rightarrow \left\{ \begin{array}{l}I \in EF \Rightarrow I \in \left( {BEF} \right) \Rightarrow BI \subset \left( {BEF} \right)\\I \in SO \subset \left( {SBD} \right) \Rightarrow I \in \left( {SBD} \right)\end{array} \right..\]

Trong \[\left( {SBD} \right)\] gọi \[N = BI \cap SD\] ta có:

\[\left\{ \begin{array}{l}N \in SD\\N \in BI \subset \left( {BEF} \right)\end{array} \right. \Rightarrow N = SD \cap \left( {BEF} \right).\]

Media VietJack

Ta có \[\left\{ \begin{array}{l}\left( {BEF} \right) \cap \left( {SAB} \right) = BE\\\left( {BEF} \right) \cap \left( {SAD} \right) = EN\\\left( {BEF} \right) \cap \left( {SCD} \right) = NF\\\left( {BEF} \right) \cap \left( {SBC} \right) = FB\end{array} \right. \Rightarrow \] Thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\] là tứ giác BENF.

c) Ta có AC qua O và \[AC{\rm{ // }}EF \Rightarrow AC \subset \left( \alpha \right).\]

Trong \[\left( {SAD} \right)\] qua A kẻ \[AP{\rm{ // }}EN\left( {P \in SD} \right) \Rightarrow AP{\rm{ // }}\left( {BEF} \right) \Leftrightarrow AP \subset \left( \alpha \right).\]

Khi đó ta có \[\left( \alpha \right) \equiv \left( {BEF} \right).\]

Ta có \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SBD} \right) = OP\\\left( {BEF} \right) \cap \left( {SBD} \right) = BN\\\left( \alpha \right){\rm{ // }}\left( {BEF} \right)\end{array} \right. \Rightarrow OP{\rm{ // }}BN.\]

Áp dụng đinh lí Ta-lét ta có: \[\frac{{DP}}{{DN}} = \frac{{DO}}{{DB}}.\]

Ta có: \[\frac{{DO}}{{OB}} = \frac{{DC}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{DO}}{{DB}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{DN}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{PN}} = \frac{1}{2} \Rightarrow DP = \frac{1}{2}NP.\]

Lại áp dụng định lí Ta-lét ta có: \[\frac{{SN}}{{SP}} = \frac{{SE}}{{SA}} = \frac{2}{3}\left( {AP{\rm{ // }}EN} \right) \Rightarrow \frac{{SN}}{{NP}} = 2 \Rightarrow SN = 2NP.\]

Từ đó ta có \[\frac{{SP}}{{SD}} = \frac{{SN + NP}}{{SN + NP + DP}} = \frac{{2NP + NP}}{{2NP + NP + \frac{1}{2}NP}} = \frac{{3NP}}{{\frac{7}{2}NP}} = \frac{6}{7}.\]

Vậy \[\frac{{SP}}{{SD}} = \frac{6}{7}.\]

Lời giải

Đáp án B

Phương pháp:

Sử dụng công thức SHTQ của CSC: \[{u_n} = {u_1} + \left( {n - 1} \right)d.\]

Cách giải:

Giả sử 2018 là số hạng thứ n ta có \[{u_n} = 2018 \Leftrightarrow 2 + \left( {n - 1} \right)9 = 2018 \Leftrightarrow n = 225.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP