Giả sử hàm số liên tục trên khoảng và có đạo hàm trên K hoặc trên với Mệnh đề nào sau đây đúng:
B. Nếu trên khoảng và trên khoảng thì là một điểm cực đại của hàm số.
C. Nếu trên khoảng và trên khoảng thì là một điểm cực đại của hàm số.
Quảng cáo
Trả lời:

Lý thuyết sách giáo khoa.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định:
Ta có: là đường tiệm cận ngang.
Mặc khác:
không là đường tiệm cận đứng.
là đường tiệm cận đứng.
Vậy đồ thị hàm số có 2 đường tiệm cận.
Lời giải
Ta có .
Từ đó ta suy ra hàm số đồng biến trên khoảng khi hàm số
nghịch biến trên khoảng .
nghịch biến trên khoảng .
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. được gọi giá trị cực tiểu của hàm số.
C. Điểm được gọi là cực tiểu của đồ thị hàm số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. Hàm số có 2 điểm cực đại và 1 điểm cực tiểu.
C. Hàm số có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
B. Hàm số đạt cực tiểu tại
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. Hàm số đồng biến trên khoảng .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.