Câu hỏi:

07/02/2023 225

Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3+x^2+2x+3 trên đoạn [-1;2] là (ảnh 1)  trên đoạn [-1,2] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Hàm số Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3+x^2+2x+3 trên đoạn [-1;2] là (ảnh 2) xác định và liên tục trên [-1,2].

Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3+x^2+2x+3 trên đoạn [-1;2] là (ảnh 3)  hàm số đồng biến trên [-1,2], do đó
Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3+x^2+2x+3 trên đoạn [-1;2] là (ảnh 4)

Vậy tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3+x^2+2x+3 trên đoạn [-1;2] là (ảnh 5)

 trên đoạn [-1,2] là 19.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số  y=ax+bcx+1  a,b,c có bảng biến thiên như sau

Cho hàm số y= ax+b/ cx+1 có bảng biến thiên như sau  Tập các giá trị b là tập nghiệm của bất phương trình nào dưới đây? (ảnh 1)

Tập các giá trị b là tập nghiệm của bất phương trình nào dưới đây?

Xem đáp án » 07/02/2023 22,657

Câu 2:

Cho hàm số y=fx có đạo hàm trên R là f'x=x23xx24x. Điểm cực đại của hàm số đã cho là

Xem đáp án » 07/02/2023 8,478

Câu 3:

Cho hàm số y=f(x) có đồ thị là đường cong trong hình vẽ bên. Tìm số nghiệm của phương trình f(x+2018)=1.

Cho hàm số y=f(x) có đồ thị là đường cong trong hình vẽ bên. Tìm số nghiệm của phương trình f(x+2018)=1. (ảnh 1)

Xem đáp án » 07/02/2023 7,786

Câu 4:

Cho hàm số y=fx liên tục trên R và có đạo hàm f'x=x+12x132x. Hàm số y=fx đồng biến trên khoảng nào dưới đây?

Xem đáp án » 07/02/2023 6,825

Câu 5:

Cho hàm số y=f(x) có đồ thị f'(x) như hình vẽ

Cho hàm số y=f(x) có đồ thị f^' (x) như hình vẽ   Hàm số y=f(1-x)+x^2/2-x nghịch biến trên khoảng (ảnh 1)

 

Hàm số Cho hàm số y=f(x) có đồ thị f^' (x) như hình vẽ   Hàm số y=f(1-x)+x^2/2-x nghịch biến trên khoảng (ảnh 2) nghịch biến trên khoảng

Xem đáp án » 07/02/2023 6,015

Câu 6:

Cho hàm số y=f(x) có bảng biến thiên:

Cho hàm số y=f(x) có bảng biến thiên:   Đồ thị hàm số y=f(x) có tất cả bao nhiêu đường tiệm cận đứng và đường tiệm cận ngang? (ảnh 1)

Đồ thị hàm số y=f(x) có tất cả bao nhiêu đường tiệm cận đứng và đường tiệm cận ngang?

Xem đáp án » 07/02/2023 5,030

Câu 7:

Cho hàm số y=f(x) có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sau   Hàm số đạt cực đại tại điểm (ảnh 1)
 

Hàm số đạt cực đại tại điểm

Xem đáp án » 07/02/2023 4,682
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay