Câu hỏi:

09/02/2023 530

Đồ thị hàm số \(y = \frac{{2x + 1}}{{4 - {x^2}}}\) có bao nhiêu tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ { - 2;2} \right\}\)

\(\mathop {\lim }\limits_{x \to \infty } = \mathop {\lim }\limits_{x \to \infty } \frac{{2x + 1}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{2}{x} + \frac{1}{{{x^2}}}}}{{\frac{4}{{{x^2}}} - 1 = 0}} \Rightarrow \) Đồ thị hàm số có 1 tiệm cận ngang là \(y = 0\)

\(\mathop {\lim }\limits_{x \to - {2^ - }} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\,\mathop {\lim }\limits_{x \to - {2^ + }} = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty ,\,\,\,\mathop {\lim }\limits_{x \to - {2^ - }} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {2^ + }} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Lời giải

Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)

\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay