Câu hỏi:

09/02/2023 474

Đồ thị hàm số \(y = \frac{{2x + 1}}{{4 - {x^2}}}\) có bao nhiêu tiệm cận?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ { - 2;2} \right\}\)

\(\mathop {\lim }\limits_{x \to \infty } = \mathop {\lim }\limits_{x \to \infty } \frac{{2x + 1}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{2}{x} + \frac{1}{{{x^2}}}}}{{\frac{4}{{{x^2}}} - 1 = 0}} \Rightarrow \) Đồ thị hàm số có 1 tiệm cận ngang là \(y = 0\)

\(\mathop {\lim }\limits_{x \to - {2^ - }} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\,\mathop {\lim }\limits_{x \to - {2^ + }} = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty ,\,\,\,\mathop {\lim }\limits_{x \to - {2^ - }} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {2^ + }} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Xem đáp án » 09/02/2023 4,475

Câu 2:

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

Xem đáp án » 10/02/2023 4,391

Câu 3:

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Xem đáp án » 09/02/2023 3,226

Câu 4:

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

Xem đáp án » 09/02/2023 1,669

Câu 5:

Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\)\(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Cho các hàm số y = loga x, y = logb x và y = c^x (với a, b, c là các số dương khác 1) có đồ thị  (ảnh 1)

Xem đáp án » 10/02/2023 1,618

Câu 6:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Xem đáp án » 10/02/2023 1,589

Câu 7:

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ

Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ Khẳng định nào sau đây đúng (ảnh 1)

Khẳng định nào sau đây đúng?

Xem đáp án » 09/02/2023 1,155

Bình luận


Bình luận