Câu hỏi:

09/02/2023 148 Lưu

Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:

A. 1
B. 2
C. 3

D. 4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Số giao điểm của hai đồ thị hàm số bằng số nghiệm của phương trình hoành độ giao điểm.

Cách giải:

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) là:

\({x^3} - 4x + 1 = x + 1 \Rightarrow {x^3} - 5x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 5 \end{array} \right.\)

Số giao điểm của hai đồ thị hàm số bằng số nghiệm của phương trình hoành độ giao điểm và bằng 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

Câu 2

A. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)    

B. Hàm số nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)

C. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số đồng biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)

Lời giải

Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)

\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = {x^e}.\ln x + {e^x}\)
B. \(y' = e.\left( {{e^{x - 1}} + {x^{e - 1}}} \right)\)
C. \(y' = x.\left( {{x^{e - 1}} + {e^{x - 1}}} \right)\)

D. \(y' = e.\ln x + x\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - \infty ;0} \right)\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( { - \infty ;\frac{1}{2}} \right)\)

D. \(\left( {0;1} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \in \left\{ { - 2;2} \right\}\)
B. \(m < - 2\) hoặc \(m > 2\)
C. \( - 2 < m < 2\)

D. \(m \in \mathbb{R}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP