Câu hỏi:
10/02/2023 119Các tiệm cận của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Đồ thị hàm số bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}},\,\left( {a,c \ne 0,\,\,ad - bc \ne 0} \right)\) có tiệm cận đứng là \(x = - \frac{d}{c}\), tiệm cận ngang là \(y = \frac{c}{a}\)
Cách giải:
Các tiệm cận của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là \(x = 1,\,\,y = 2\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Câu 2:
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Câu 5:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Câu 6:
Câu 7:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ
Khẳng định nào sau đây đúng?
về câu hỏi!