Câu hỏi:
10/02/2023 227Theo thống kê dân số năm 2017, mật độ dân số của Việt Nam là 308 người/\(k{m^2}\) và mức tăng trưởng dân số là năm. Với mức tăng trưởng như vậy, tới năm bao nhiêu mật độ dân số Việt Nam đạt 340 người 1,03%/\(k{m^2}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Công thức: \({A_n} = M{\left( {1 + r\% } \right)^n}\)
Với: \({A_n}\) là mật độ dân số ở năm thứ n,
M là mật độ dân số ban đầu,
n là thời gian (năm),
r là mức tăng trưởng dân số.
Cách giải:
Ta có: \({A_n} = M{\left( {1 + r\% } \right)^n} \Leftrightarrow 340 = 308.1 + 1,03{\% ^n} \Rightarrow n = {\log _{1,0103}}\left( {\frac{{340}}{{308}}} \right) \approx 9,64\)
\( \Rightarrow \) Ta cần 10 năm để đạt mật độ dân số như vậy
\( \Rightarrow \) Đến năm 2027 mật độ dân số nước ta đạt đến con số đó.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Câu 2:
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Câu 5:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Câu 6:
Câu 7:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ
Khẳng định nào sau đây đúng?
về câu hỏi!