Câu hỏi:

10/02/2023 214

Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Chia cả hai vế cho \({5^{1 - \sqrt {1 - 2x} }}\)

Cách giải:

Chia cả hai vế cho \({5^{1 - \sqrt {1 - 2x} }}\)ta có:

\({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {2 - x} }} = {4.5^x} \Leftrightarrow {5^{2x - 1 + 2\sqrt {1 - 2x} }} - m = {4.5^{x - 1 + \sqrt {1 - 2x} }} \Leftrightarrow {5^{2x - 1 + 2\sqrt {1 - 2x} }} - {4.5^{x - 1 + \sqrt {1 - 2x} }} = m\)

\( \Leftrightarrow 5.{\left( {\frac{1}{{\sqrt 5 }}} \right)^{2{{\left( {\sqrt {1 - 2x} - 1} \right)}^2}}} - 4.{\left( {\frac{1}{{\sqrt 5 }}} \right)^{{{\left( {\sqrt {1 - 2x} - 1} \right)}^2}}} = m\)

Ta thấy \({\left( {\sqrt {1 - 2x} - 1} \right)^2} \ge 0,\,\,\forall x \ge \frac{1}{2} \Rightarrow 0 < {\left( {\frac{1}{{\sqrt 5 }}} \right)^{{{\left( {\sqrt {1 - 2x} - 1} \right)}^2}}} \le 1,\,\,\,\forall x \ge \frac{1}{2}\left( {do\,\,0 < \frac{1}{{\sqrt 5 }} < 1} \right)\)

Đặt \({\left( {\frac{1}{{\sqrt 5 }}} \right)^{{{\left( {\sqrt {1 - 2x} - 1} \right)}^2}}} = t,\,\,0 < t \le 1\)

Xét hàm số \(y = 5{t^2} - 4t,\,\,t \in \left( {0;1} \right]:\,\,\,y' = 10t - 4\)

\(y' = 0 \Leftrightarrow t = \frac{2}{5}\)

Ta có: \(y\left( 0 \right) = 0,\,\,\,y\left( {\frac{2}{5}} \right) = - \frac{4}{5},\,\,\,y\left( 1 \right) = 1 \Rightarrow \mathop {max}\limits_{\left( {0;1} \right]} y = 1,\,\,\,\mathop {\min }\limits_{\left( {0;1} \right]} y = - \frac{4}{5}\)

Để phương trình đã cho có nghiệm thì \(m \in \left[ { - \frac{4}{5};1} \right] \Rightarrow a = - \frac{4}{5},\,\,b = 1 \Rightarrow b - a = \frac{9}{5}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Lời giải

Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)

\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay