Câu hỏi:

10/02/2023 222 Lưu

Cho tứ diện ABCD \(AB = x\) thay đổi, tất cả các cạnh còn lại có độ dài a. Tính khoảng cách giữa hai đường thẳng AB CD trong trường hợp thể tích của khối tứ diện ABCD lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cách giải:

Gọi M là trung điểm của CD. Kẻ AH vuông góc mặt phẳng (BCD) (H thuộc (BCD))

Cho tứ diện ABCD có AB = x thay đổi, tất cả các cạnh còn lại có độ dài a. Tính khoảng (ảnh 1)

\( \Rightarrow H \in BM,\,\,\,AH \bot HM\)

\({V_{ABCD}}\) lớn nhất khi và chỉ khi AH có độ dài lớn nhất, tức là khi H trùng M

Hai tam giác ACD, BCD đều, cạnh a, có đường cao AM, BM bằng \(\frac{{a\sqrt 3 }}{2}\)

Tam giác ABM vuông cân tại A, lấy N là trung điểm của AB \( \Rightarrow MN \bot AB\)

\(MN \subset \left( {AMB} \right) \bot CD \Rightarrow MN \bot CD \Rightarrow \) MN là đoạn vuông góc chung của AB và CD

Khoảng cách giữa hai đường thẳng AB và CD là: \(MN = \frac{{AM}}{{\sqrt 2 }} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt 2 }} = \frac{{a\sqrt 6 }}{4}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)

\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP