Một khối gỗ hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt là 30cm, 20cm và 30cm (như hình vẽ). Một con kiến xuất phát từ điểm A muốn tới điểm B thì quãng đường ngắn nhất nó phải đi là bao nhiêu cm?
Một khối gỗ hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt là 30cm, 20cm và 30cm (như hình vẽ). Một con kiến xuất phát từ điểm A muốn tới điểm B thì quãng đường ngắn nhất nó phải đi là bao nhiêu cm?

Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Trải tất cả các mặt của hình hộp chữ nhật ra cùng một mặt phẳng.
Cách giải:


Để đến được B, đầu tiên con kiến phải đi trên một trong các mặt bên và đi đến một trong các cạnh bên: NP, PE, QE, MQ, MF, NF
* Giả sử con kiến đi đến I trên cạnh MF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:
Độ dài \(AB = \sqrt {A{Q^2} + Q{B^2}} = \sqrt {{{50}^2} + {{30}^2}} = 10\sqrt {34} \left( {cm} \right)\)
* Giả sử con kiến đi đến I trên cạnh NF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:
Độ dài \(AB = \sqrt {A{P^2} + P{B^2}} = \sqrt {{{60}^2} + {{20}^2}} = 20\sqrt {10} \left( {cm} \right)\)
* Giả sử con kiến đi đến I trên cạnh PF sau đó tới B, khi đó để độ dài quãng đường là ngắn nhất thì A, I, B thẳng hàng:
Độ dài \(AB = \sqrt {A{N^2} + N{B^2}} = \sqrt {{{30}^2} + {{50}^2}} = 10\sqrt {34} \left( {cm} \right)\)
Vậy, quãng đường ngắn nhất con kiến đi là \(10\sqrt {34} \left( {cm} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:
- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)
- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định
- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên
- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Cách giải:
Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)
\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)
\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)
Lời giải
Đáp án A
Phương pháp:
- Tìm TXĐ
- Tìm nghiệm và điểm không xác định của y’
- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e
- Tính tích M.m.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)
\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)
Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)
Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.