Câu hỏi:
10/02/2023 523Phương trình \({e^x} - {e^{\sqrt {2x - 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \) có nghiệm trong khoảng nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Sử dụng tính đơn điệu của hàm số.
Cách giải:
Điều kiện: \(x \ge - \frac{1}{2}\)
\({e^x} - {e^{\sqrt {2x + 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \Leftrightarrow 2x + 1 + 2\sqrt {2x + 1} + 1 + {e^{\sqrt {2x + 1} }} = {x^2} + 2x + 1 + {e^x}\)
\( \Leftrightarrow {\left( {\sqrt {2x + 1} + 1} \right)^2} + {e^{\sqrt {2x + 1} }} = {\left( {x + 1} \right)^2} + {e^x}\)
Xét hàm số \(y = {\left( {x + 1} \right)^2} + {e^x} \Rightarrow y' = 2\left( {x + 1} \right) + {e^x} = 2x + 1 + {e^x} + 1 > 0,\,\,\forall x \ge - \frac{1}{2}\)
\( \Rightarrow \) Hàm số đồng biến trên \(\left[ { - \frac{1}{2}; + \infty } \right)\)
Phương trình đã cho tương đương:
\(\sqrt {2x + 1} = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2x + 1 = {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} - 2x - 1 = 0\end{array} \right. \Leftrightarrow x = 1 + \sqrt 2 \in \left( {2;\frac{5}{2}} \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Câu 2:
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Câu 5:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Câu 6:
Câu 7:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ
Khẳng định nào sau đây đúng?
về câu hỏi!