Câu hỏi:

10/02/2023 984

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA \bot \left( {ABCD} \right)\)\(SA = a\). Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ.

Trong đó, \(B\left( {2a;0;0} \right),\,\,C\left( {2a;2a;0} \right),\,\,E\left( {a;0;0} \right),\,\,S\left( {0;0;a} \right)\)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA vuông góc (ABCD) và SA = a (ảnh 1)

Gọi \(I\left( {{x_0};{y_0};{z_0}} \right)\) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, \[I{S^2} = I{B^2} = I{C^2} = I{E^2}\]

\( \Leftrightarrow \left\{ \begin{array}{l}x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - 2a} \right)^2} + y_0^2 + z_0^2\\x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - 2a} \right)^2} + {\left( {{y_0} - 2a} \right)^2} + z_0^2\\x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - a} \right)^2} + y_0^2 + z_0^2\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 2a{z_0} + {a^2} = - 4a{x_0} + 4{a^2}\\ - 2a{z_0} + {a^2} = - 4a{x_0} + 4{a^2} - 4a{y_0} + 4{a^2}\\ - 2a{z_0} + {a^2} = - 2a{x_0} + {a^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_0} - 2{z_0} = 3a\\4{x_0} + 4{y_0} - 2{z_0} = 7a\\{x_0} - {z_0} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{{3a}}{2}\\{y_0} = a\\{z_0} = \frac{{3a}}{2}\end{array} \right.\)

Bán kính mặt cầu: \(R = SI = \sqrt {x_0^2 + y_0^2 + {{\left( {{z_0} - a} \right)}^2}} = \sqrt {\frac{{9{a^2}}}{a} + {a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt {14} }}{2}\)

Diện tích mặt cầu: \(S = 4\pi {R^2} = 14\pi {a^2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Xem đáp án » 09/02/2023 4,045

Câu 2:

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

Xem đáp án » 10/02/2023 3,972

Câu 3:

Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\)

Xem đáp án » 09/02/2023 3,146

Câu 4:

Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

Xem đáp án » 09/02/2023 1,531

Câu 5:

Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\)\(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

Cho các hàm số y = loga x, y = logb x và y = c^x (với a, b, c là các số dương khác 1) có đồ thị  (ảnh 1)

Xem đáp án » 10/02/2023 1,426

Câu 6:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

Xem đáp án » 10/02/2023 1,352

Câu 7:

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ

Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ Khẳng định nào sau đây đúng (ảnh 1)

Khẳng định nào sau đây đúng?

Xem đáp án » 09/02/2023 1,097

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store