Câu hỏi:
10/02/2023 113Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Chia cả hai vế cho \({4^x}\), đặt \({\left( {\frac{3}{2}} \right)^x} = t\). Giải phương trình tìm t, từ đó tìm x và tổng \({x_1} + {x_2}\)
Cách giải:
\({3.9^x} - {7.6^x} + {2.4^x} = 0 \Leftrightarrow 3.{\left( {\frac{9}{4}} \right)^x} - 7{\left( {\frac{3}{2}} \right)^x} + 2 = 0\)
Đặt \({\left( {\frac{3}{2}} \right)^x} = t\). Phương trình trở thành \(\begin{array}{l}3{t^2} - 7t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = \frac{1}{3}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\left( {\frac{3}{2}} \right)^x} = 2\\{\left( {\frac{3}{2}} \right)^x} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _{\frac{3}{2}}}2\\x = {\log _{\frac{3}{2}}}\frac{1}{3}\end{array} \right.\\\end{array}\)
Tổng hai nghiệm \({x_1} + {x_2} = {\log _{\frac{3}{2}}}2 + {\log _{\frac{3}{2}}}\frac{1}{3} = {\log _{\frac{3}{2}}}\left( {2.\frac{1}{3}} \right) = {\log _{\frac{3}{2}}}\frac{2}{3} = - 1\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Câu 2:
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Câu 5:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Câu 6:
Câu 7:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có bảng biến thiên như hình vẽ
Khẳng định nào sau đây đúng?
về câu hỏi!