Câu hỏi:
13/02/2023 4,434
Tìm \(m\) để hàm số \(y = - \frac{2}{3}{x^3} - 2m{x^2} + \left( {{m^2} + 3m} \right)x + 5\) đạt cực đại tại \(x = 1\).
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Xét hàm số \(y = - \frac{2}{3}{x^3} - 2m{x^2} + \left( {{m^2} + 3m} \right)x + 5\).
Tập xác định D = R.
Ta có \(y' = - 2{x^2} - 4mx + {m^2} + 3m\) ; \(y'' = - 4x - 4m\).
Để hàm số đạt cực đại tại \(x = 1\) thì \(y'\left( 1 \right) = 0 \Leftrightarrow - 2 - 4m + {m^2} + 3m = 0
Với \(m = 2\)thì \(y''\left( 1 \right) = - 4 - 8 = - 12 > 0\) => Hàm số đạt cực đại tại x = 1 => \(m = 2\)thỏa mãn.
Với \(m = - 1\) thì \(y''\left( 1 \right) = - 4 + 4 = 0\).
Khi đó \(y' = - 2{x^2} + 4x - 2 = - 2{\left( {x - 1} \right)^2}\)
=> y’ không đổi dấu trên R nên hàm số không có cực trị => \(m = - 1\) không thỏa mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Lời giải
Ta có:
* \(4a + 2\pi r = 60\) \( \Leftrightarrow \,\,\,\pi r = 30 - 2a\)
Điều kiện: \(0 < 4a < 60\,\,\, \Leftrightarrow \,\,0 < a < 15\).
* Tổng diện tích của hình vuông và hình tròn:
\(S = {a^2} + {r^2}\pi \)\( = {a^2} + \frac{{{{\left( {30 - 2a} \right)}^2}}}{\pi } = \frac{1}{\pi }\left[ {\left( {\pi + 4} \right){a^2} - 120a + 900} \right]\)
* Xét \(f(a) = \left( {\pi + 4} \right){a^2} - 120a + 900\) với \(a \in \left( {0,\,15} \right)\)
\(f(a)\) đạt giá trị nhỏ nhất tại \(a = \frac{{120}}{{2\left( {\pi + 4} \right)}} = \frac{{60}}{{\pi + 4}} \in \left( {0,\,15} \right)\).
* \(S\) đạt giá trị nhỏ nhất khi \(a = \frac{{60}}{{\pi + 4}}\).
\( \Rightarrow \,\,\,\pi r = 30 - 2.\frac{{60}}{{\pi + 4}} = \frac{{30\pi }}{{\pi + 4}}\) \( \Rightarrow \,\,\,r = \frac{{30}}{{\pi + 4}}\)
* Khi đó: \(\frac{a}{r} = \frac{{60}}{{\pi + 4}}:\frac{{30}}{{\pi + 4}} = 2\).
Kết luận: \(\frac{a}{r} = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.