Câu hỏi:

13/02/2023 570 Lưu

Đồ thị hàm số \[y = \frac{{\sqrt {4 - {x^2}} }}{{x + 3}}\] có tất cả bao nhiêu đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A
Tập xác định: \[D = \left[ { - 2;2} \right]\].
Ta có:Vì tập xác định của hàm số là đoạn\[D = \left[ { - 2;2} \right]\]\[ - 3 \notin \left[ { - 2;2} \right]\]
nên không tồn tại giới hạn của hàm số khi x tiến ra âm vô cùng ,dương vô cùng và -3 nên đồ thị hàm số không có tiệm cận ngang , tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có đường tiệm cận nào.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

 Media VietJack

\(\Delta ABC\) vuông cân tại \(A\) nên \(AB = AC = a\) \( \Rightarrow \) diện tích \(\Delta ABC\) là :\({S_{\Delta ABC}} = \frac{1}{2}{a^2}\)
\(SA \bot (ABC)\), \(SA = a\)
Thể tích hình chóp \(S.ABC\) là: \({V_{S.ABC}} = \frac{1}{3}.\)\({S_{\Delta ABC}}\).\(SA = \)\(\frac{1}{3}\).\(\frac{1}{2}{a^2}\).\(a\)=\(\frac{{{a^3}}}{6}\)

Lời giải

Lời giải

Ta có:

* \(4a + 2\pi r = 60\) \( \Leftrightarrow \,\,\,\pi r = 30 - 2a\)

Điều kiện: \(0 < 4a < 60\,\,\, \Leftrightarrow \,\,0 < a < 15\).

* Tổng diện tích của hình vuông và hình tròn:

 \(S = {a^2} + {r^2}\pi \)\( = {a^2} + \frac{{{{\left( {30 - 2a} \right)}^2}}}{\pi } = \frac{1}{\pi }\left[ {\left( {\pi + 4} \right){a^2} - 120a + 900} \right]\)

* Xét \(f(a) = \left( {\pi + 4} \right){a^2} - 120a + 900\) với \(a \in \left( {0,\,15} \right)\)

 \(f(a)\) đạt giá trị nhỏ nhất tại \(a = \frac{{120}}{{2\left( {\pi + 4} \right)}} = \frac{{60}}{{\pi + 4}} \in \left( {0,\,15} \right)\).

* \(S\) đạt giá trị nhỏ nhất khi \(a = \frac{{60}}{{\pi + 4}}\).

 \( \Rightarrow \,\,\,\pi r = 30 - 2.\frac{{60}}{{\pi + 4}} = \frac{{30\pi }}{{\pi + 4}}\) \( \Rightarrow \,\,\,r = \frac{{30}}{{\pi + 4}}\)

* Khi đó: \(\frac{a}{r} = \frac{{60}}{{\pi + 4}}:\frac{{30}}{{\pi + 4}} = 2\).

            Kết luận: \(\frac{a}{r} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP